It wasn't actually running the pass, and since it is
missing the llvm prefix, the eh intrinsic was not
really an IntrinsicInst.
Also add missing test for lifetime markers.
llvm-svn: 275370
Summary:
In this patch we implement the following parts of XRay:
- Supporting a function attribute named 'function-instrument' which currently only supports 'xray-always'. We should be able to use this attribute for other instrumentation approaches.
- Supporting a function attribute named 'xray-instruction-threshold' used to determine whether a function is instrumented with a minimum number of instructions (IR instruction counts).
- X86-specific nop sleds as described in the white paper.
- A machine function pass that adds the different instrumentation marker instructions at a very late stage.
- A way of identifying which return opcode is considered "normal" for each architecture.
There are some caveats here:
1) We don't handle PATCHABLE_RET in platforms other than x86_64 yet -- this means if IR used PATCHABLE_RET directly instead of a normal ret, instruction lowering for that platform might do the wrong thing. We think this should be handled at instruction selection time to by default be unpacked for platforms where XRay is not availble yet.
2) The generated section for X86 is different from what is described from the white paper for the sole reason that LLVM allows us to do this neatly. We're taking the opportunity to deviate from the white paper from this perspective to allow us to get richer information from the runtime library.
Reviewers: sanjoy, eugenis, kcc, pcc, echristo, rnk
Subscribers: niravd, majnemer, atrick, rnk, emaste, bmakam, mcrosier, mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D19904
llvm-svn: 275367
This happens to make X86CallFrameOptimization in -O0 / FastISel builds as well,
but it's not clear if the pass should run in that setup.
http://reviews.llvm.org/D22314
llvm-svn: 275320
Currently the MIR framework prints all its outputs (errors and actual
representation) on stderr.
This patch fixes that by printing the regular output in the output
specified with -o.
Differential Revision: http://reviews.llvm.org/D22251
llvm-svn: 275314
We know that pcmp produces all-ones/all-zeros bitmasks, so we can use that behavior to avoid unnecessary constant loading.
One could argue that load+and is actually a better solution for some CPUs (Intel big cores) because shifts don't have the
same throughput potential as load+and on those cores, but that should be handled as a CPU-specific later transformation if
it ever comes up. Removing the load is the more general x86 optimization. Note that the uneven usage of vpbroadcast in the
test cases is filed as PR28505:
https://llvm.org/bugs/show_bug.cgi?id=28505
Differential Revision: http://reviews.llvm.org/D22225
llvm-svn: 275276
We can freeze the registers after the MachineFrameInfo has been configured (by
telling it about calls, inline asm, ...). This doesn't happen at all yet, but
will be part of IR translation.
Fixes -verify-machineinstrs assertion.
llvm-svn: 275221
This patch corresponds to review:
http://reviews.llvm.org/D20239
It adds exploitation of XXINSERTW and XXEXTRACTUW instructions that
are useful in some cases for inserting and extracting vector elements of
v4[if]32 vectors.
llvm-svn: 275215
With r274952 and r275201 in place there are no cases left where a
forward liveness analysis yields different results than a backward one.
So we can remove the forward stepping logic.
Differential Revision: http://reviews.llvm.org/D22083
llvm-svn: 275204
If a subtarget has both ZCZeroing and CustomCheapAsMoveHandling features (now
only Kryo has both), set FMOVS0 and FMOVD0 isAsCheapAsAMove.
Differential Revision: http://reviews.llvm.org/D22256
llvm-svn: 275178
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
Summary:
Previously, constant index insertelements would be turned into SI_INDIRECT_DST,
which is bound to prevent some optimization opportunities. Worse, it mislead
the heuristic that decides whether immediates should be lowered to S_MOV_B32
or V_MOV_B32 in a way that resulted in unnecessary v_readfirstlanes.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D22217
llvm-svn: 275160
Summary:
Setting MIMG to 0 has a bunch of unexpected side effects, including that
isVMEM returns false which leads to incorrect treatment in the hazard
recognizer. The reason I noticed it is that it also leads to incorrect
treatment in VGPR-to-SGPR copies, which is one cause of the referenced bug.
The only reason why MIMG was set to 0 is to signal the special handling of
dmasks, but that can be checked differently.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96877
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D22210
llvm-svn: 275113
Summary:
The main bug fix here is using the 32-bit encoding of V_ADD_I32 in
materializeFrameBaseRegister and resolveFrameIndex, so that arbitrary
immediates work.
The second part is that we may now require the SegmentWaveByteOffset
even when there are initially no stack objects and VGPR spilling isn't
enabled, for stack slots that are allocated later. This means that some
bits become effectively dead and can be cleaned up.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96602
Tested-by: Kai Wasserbäch <kai@dev.carbon-project.org>
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21551
llvm-svn: 275108
This bug (llvm.org/PR28124) was introduced by r237977, which refactored
the tail call sequence to be generated in two passes instead of one.
Unfortunately, the stack adjustment produced by the first pass was not
recognized by X86FrameLowering::mergeSPUpdates() in all cases, causing
code such as the following, which clobbers the return address, to be
generated:
popl %edi
popl %edi
pushl %eax
jmp tailcallee # TAILCALL
To fix the problem, the entire stack adjustment is performed in
X86ExpandPseudo::ExpandMI() for tail calls.
Patch by Magnus Lång <margnus1@gmail.com>
Differential Revision: http://reviews.llvm.org/D21325
llvm-svn: 275103
It is an optimization pass, and should not run at -O0. Especially since Fast RA
will not do the required register coalescing anyway, so it's a loss even from
the optimization standpoint.
This also works around (but doesn't quite fix) PR28489.
llvm-svn: 275099
Summary: Add support for the z13 instructions LOCHI and LOCGHI which
conditionally load immediate values. Add target instruction info hooks so
that if conversion will allow predication of LHI/LGHI.
Author: RolandF
Reviewers: uweigand
Subscribers: zhanjunl
Commiting on behalf of Roland.
Differential Revision: http://reviews.llvm.org/D22117
llvm-svn: 275086