Commit Graph

11 Commits

Author SHA1 Message Date
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Sanjoy Das 7c0ce26614 This patch teaches IndVarSimplify to add nuw and nsw to certain kinds
of operations that provably don't overflow. For example, we can prove
%civ.inc below does not sign-overflow. With this change,
IndVarSimplify changes %civ.inc to an add nsw.

  define i32 @foo(i32* %array, i32* %length_ptr, i32 %init) {
   entry:
    %length = load i32* %length_ptr, !range !0
    %len.sub.1 = sub i32 %length, 1
    %upper = icmp slt i32 %init, %len.sub.1
    br i1 %upper, label %loop, label %exit
  
   loop:
    %civ = phi i32 [ %init, %entry ], [ %civ.inc, %latch ]
    %civ.inc = add i32 %civ, 1
    %cmp = icmp slt i32 %civ.inc, %length
    br i1 %cmp, label %latch, label %break
  
   latch:
    store i32 0, i32* %array
    %check = icmp slt i32 %civ.inc, %len.sub.1
    br i1 %check, label %loop, label %break
  
   break:
    ret i32 %civ.inc
  
   exit:
    ret i32 42
  }

Differential Revision: http://reviews.llvm.org/D6748

llvm-svn: 225282
2015-01-06 19:02:56 +00:00
Stephen Lin c1c7a1309c Update Transforms tests to use CHECK-LABEL for easier debugging. No functionality change.
This update was done with the following bash script:

  find test/Transforms -name "*.ll" | \
  while read NAME; do
    echo "$NAME"
    if ! grep -q "^; *RUN: *llc" $NAME; then
      TEMP=`mktemp -t temp`
      cp $NAME $TEMP
      sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
      while read FUNC; do
        sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
      done
      mv $TEMP $NAME
    fi
  done

llvm-svn: 186268
2013-07-14 01:42:54 +00:00
Chandler Carruth 7383bfd67e Switch BBVectorize to directly depend on having a TTI analysis.
This could be simplified further, but Hal has a specific feature for
ignoring TTI, and so I preserved that.

Also, I needed to use it because a number of tests fail when switching
from a null TTI to the NoTTI nonce implementation. That seems suspicious
to me and so may be something that you need to look into Hal. I worked
it by preserving the old behavior for these tests with the flag that
ignores all target info.

llvm-svn: 171722
2013-01-07 10:22:36 +00:00
Nadav Rotem b1615b1ac4 Make opt grab the triple from the module and use it to initialize the target machine.
llvm-svn: 171341
2013-01-01 08:00:32 +00:00
Hal Finkel 842ad0b621 BBVectorize: Choose pair ordering to minimize shuffles
BBVectorize would, except for loads and stores, always fuse instructions
so that the first instruction (in the current source order) would always
represent the low part of the input vectors and the second instruction
would always represent the high part. This lead to too many shuffles
being produced because sometimes the opposite order produces fewer of them.

With this change, BBVectorize tracks the kind of pair connections that form
the DAG of candidate pairs, and uses that information to reorder the pairs to
avoid excess shuffles. Using this information, a future commit will be able
to add VTTI-based shuffle costs to the pair selection procedure. Importantly,
the number of remaining shuffles can now be estimated during pair selection.

There are some trivial instruction reorderings in the test cases, and one
simple additional test where we certainly want to do a reordering to
avoid an unnecessary shuffle.

llvm-svn: 167122
2012-10-31 15:17:07 +00:00
Hal Finkel e0d9db9953 Move target-specific BBVectorize tests into a separate directory.
llvm-svn: 166802
2012-10-26 19:38:09 +00:00
Hal Finkel 65e0da798b Add CPU model to BBVectorize cost-model tests.
llvm-svn: 166720
2012-10-25 21:31:51 +00:00
Hal Finkel cbf9365f4c Begin incorporating target information into BBVectorize.
This is the first of several steps to incorporate information from the new
TargetTransformInfo infrastructure into BBVectorize. Two things are done here:

 1. Target information is used to determine if it is profitable to fuse two
    instructions. This means that the cost of the vector operation must not
    be more expensive than the cost of the two original operations. Pairs that
    are not profitable are no longer considered (because current cost information
    is incomplete, for intrinsics for example, equal-cost pairs are still
    considered).

 2. The 'cost savings' computed for the profitability check are also used to
    rank the DAGs that represent the potential vectorization plans. Specifically,
    for nodes of non-trivial depth, the cost savings is used as the node
    weight.

The next step will be to incorporate the shuffle costs into the DAG weighting;
this will give the edges of the DAG weights as well. Once that is done, when
target information is available, we should be able to dispense with the
depth heuristic.

llvm-svn: 166716
2012-10-25 21:12:23 +00:00
Hal Finkel c34e51132c Add a basic-block autovectorization pass.
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).

llvm-svn: 149468
2012-02-01 03:51:43 +00:00