Summary:
This patch adds an implementation of targetShrinkDemandedConstant that tries to keep shrinkdemandedbits from removing bits that would otherwise have been recognized as a movzx.
We still need a follow patch to stop moving ands across srl if the and could be represented as a movzx before the shift but not after. I think this should help with some of the cases that D42088 ended up removing during isel.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42265
llvm-svn: 323048
This change applies to places where we would turn 128/256-bit code into 512-bit in order to get a wider element type through sext/zext. Any 512-bit types that already existed in the IR/DAG will be left that way.
The width preference has no effect on codegen behavior when the target does not have AVX512 enabled. So AVX/AVX2 codegen cannot be limited via this mechanism yet.
If the preference is lower than 256 we may still use a 256 bit type to do the operation. Constraining to 128 bits makes it much more difficult to support some operations. For many of these cases we need to change element width while keeping element count constant which is easiest done by switching between 256 and 128 bit.
The preference is only obeyed when AVX512 and VLX are available. This means the preference is not obeyed for KNL, but is obeyed for SKX, Cannonlake, and Icelake. For KNL, the only way to do masked operation is on 512-bit registers so we would have to completely disable masking to obey the preference. We would also lose support for gather, scatter, ctlz, vXi64 multiplies, etc. This may change in the future, but this simplifies the initial implementation.
Differential Revision: https://reviews.llvm.org/D41895
llvm-svn: 323016
This will cause the vectorizers to do some limiting of the vector widths they create. This is not a strict limit. There are reasons I know of that the loop vectorizer will generate larger vectors for.
I've written this in such a way that the interface will only return a properly supported width(0/128/256/512) even if the attribute says something funny like 384 or 10.
This has been split from D41895 with the remainder in a follow up commit.
llvm-svn: 323015
On current machines we have load-on-condition instructions that can be
used to directly implement the SETCC semantics. If we have those, it is
always preferable to use them instead of generating the IPM sequence.
llvm-svn: 322989
In order to implement a test whether a compare-and-swap succeeded, the
SystemZ back-end currently emits a rather inefficient sequence of first
converting the CC result into an integer, and then testing that integer
against zero. This commit changes the back-end to simply directly test
the CC value set by the compare-and-swap instruction.
llvm-svn: 322988
The SystemZ back-end uses a sequence of IPM followed by arithmetic
operations to implement the SETCC primitive. This is currently done
early during SelectionDAG. This patch moves generating those sequences
to much later in SelectionDAG (during PreprocessISelDAG).
This doesn't change much in generated code by itself, but it allows
further enhancements that will be checked-in as follow-on commits.
llvm-svn: 322987
Fix a performance regression caused by r322737.
While trying to make it easier to replace compares with existing adds and
subtracts, I accidentally stopped it from doing so in some cases. This should
fix that. I'm also fixing another potential bug in that commit.
Differential Revision: https://reviews.llvm.org/D42263
llvm-svn: 322972
RuntimeLibcallSignatures previously manually initialized all the libcall
names into an array and searched it linearly for the first match to lookup
the corresponding index.
r322802 switched that to initializing a map keyed by the libcall name.
Neither of these approaches works correctly because some libcall numbers use
the same name on different platforms (e.g. the "l" suffixed functions
use f80 or f128 or ppcf128).
This change fixes that by ensuring that each name only goes into the map
once. It also adds tests.
Differential Revision: https://reviews.llvm.org/D42271
llvm-svn: 322971
Sign-extension opcodes have been split into a separate proposal from
the main threads proposal, so switch them to their own target
feature. See:
https://github.com/WebAssembly/sign-extension-ops
llvm-svn: 322966
Try to reverse the constant-shrinking that happens in SimplifyDemandedBits()
for 'and' masks when it results in a smaller sign-extended immediate.
We are also able to detect dead 'and' ops here (the mask is all ones). In
that case, we replace and return without selecting the 'and'.
Other targets might want to share some of this logic by enabling this under a
target hook, but I didn't see diffs for simple cases with PowerPC or AArch64,
so they may already have some specialized logic for this kind of thing or have
different needs.
This should solve PR35907:
https://bugs.llvm.org/show_bug.cgi?id=35907
Differential Revision: https://reviews.llvm.org/D42088
llvm-svn: 322957
This avoids playing games with pseudo pass IDs and avoids using an
unreliable MRI::isSSA() check to determine whether register allocation
has happened.
Note that this renames:
- MachineLICMID -> EarlyMachineLICM
- PostRAMachineLICMID -> MachineLICMID
to be consistent with the EarlyTailDuplicate/TailDuplicate naming.
llvm-svn: 322927
Re-commit of r322200: The testcase shouldn't hit machineverifiers
anymore with r322917 in place.
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322919
Do not create CALLSEQ_START/CALLSEQ_END when there is no callframe to
setup and the callframe size is 0.
- Fixes an invalid callframe nesting for byval arguments, which would
look like this before this patch (as in `big-byval.ll`):
...
ADJCALLSTACKDOWN 32768, 0, ... # Setup for extfunc
...
ADJCALLSTACKDOWN 0, 0, ... # setup for memcpy
...
BL &memcpy ...
ADJCALLSTACKUP 0, 0, ... # destroy for memcpy
...
BL &extfunc
ADJCALLSTACKUP 32768, 0, ... # destroy for extfunc
- Saves us two instructions in the common case of zero-sized stackframes.
- Remove an unnecessary scheduling barrier (hence the small unittest
changes).
Differential Revision: https://reviews.llvm.org/D42006
llvm-svn: 322917
This adds a new instrinsic to support the rdpid instruction. The implementation is a bit weird because the intrinsic is defined as always returning 32-bits, but the assembler support thinks the instruction produces a 64-bit register in 64-bit mode. But really it zeros the upper 32 bits. So I had to add separate patterns where 64-bit mode uses an extract_subreg.
Differential Revision: https://reviews.llvm.org/D42205
llvm-svn: 322910
Summary:
This patch implements d16 support for image load, image store and image sample intrinsics.
Reviewers:
Matt, Brian.
Differential Revision:
https://reviews.llvm.org/D3991
llvm-svn: 322903
Remove the tight coupling between llvm/CodeGenRuntimeLibcalls.def and
the table of supported singatures for wasm. This will allow adding new libcalls
without changing wasm's signature table.
Also, some cleanup:
Use ManagedStatics instead of const tables to avoid memory/binary bloat.
Use a StringMap instead of a linear search for name lookup.
Differential Revision: https://reviews.llvm.org/D35592
llvm-svn: 322802
Every known PE COFF target emits /EXPORT: linker flags into a .drective
section. The AsmPrinter should handle this.
While we're at it, use global_values() and emit each export flag with
its own .ascii directive. This should make the .s file output more
readable.
llvm-svn: 322788
Summary:
This patch adds a new target option in order to control GlobalISel.
This will allow the users to enable/disable GlobalISel prior to the
backend by calling `TargetMachine::setGlobalISel(bool Enable)`.
No test case as there is already a test to check GlobalISel
command line options.
See: CodeGen/AArch64/GlobalISel/gisel-commandline-option.ll.
Reviewers: qcolombet, aemerson, ab, dsanders
Reviewed By: qcolombet
Subscribers: rovka, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42137
llvm-svn: 322773
Trying to link
__attribute__((weak, visibility("hidden"))) extern int foo;
int *main(void) {
return &foo;
}
on OS X fails with
ld: 32-bit RIP relative reference out of range (-4294971318 max is +/-2GB): from _main (0x100000FAB) to _foo@0x00001000 (0x00000000) in '_main' from test.o for architecture x86_64
The problem being that 0 cannot be computed as a fixed difference from
%rip. Exactly the same issue exists on ELF and we can use the same
solution.
llvm-svn: 322739
This extends my previous patches to also optimize overflow-checked multiplies during SelectionDAG.
Differential revision: https://reviews.llvm.org/D40922
llvm-svn: 322738
The ARM backend contains code that tries to optimize compares by replacing them with an existing instruction that sets the flags the same way. This allows it to replace a "cmp" with a "adds", generalizing the code that replaces "cmp" with "sub". It also heuristically disables sinking of instructions that could potentially be used to replace compares (currently only if they're next to each other).
Differential revision: https://reviews.llvm.org/D38378
llvm-svn: 322737
Most are just replaced with instrs lists, but a few regexps have been further generalized to match more instructions with a single pattern.
llvm-svn: 322734
If we are splatting pairs of 32-bit elements, we can use a 64-bit broadcast to get the job done.
We could probably could probably do this with other sizes too, for example four 16-bit elements. Or we could broadcast pairs of 16-bit elements using a 32-bit element broadcast. But I've left that as a future improvement.
I've also restricted this to AVX2 only because we can only broadcast loads under AVX.
Differential Revision: https://reviews.llvm.org/D42086
llvm-svn: 322730
We legalize selects of masks with scalar conditions using a bitcast to an integer type. But if we are in 32-bit mode we can't convert v64i1 to i64. So instead split the v64i1 to v32i1 and concat it back together. Each half will then be legalized by bitcasting to i32 which is fine.
The test case is a little indirect. If we have the v64i1 select in IR it will get legalized by legalize vector ops which has a run of type legalization after it. That type legalization run is able to fix this i64 bitcast. So in order to avoid that we need a build_vector of a splat which legalize vector ops will ignore. Legalize DAG will then turn that into a select via LowerBUILD_VECTORvXi1. And the select will get legalized. In this case there is no type legalizer run to cleanup the bitcast.
This fixes pr35972.
llvm-svn: 322724
candidates with coldcc attribute.
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 322721
BRCTH is capable of a long branch which needs to be recognized during branch
relaxation. This is done by checking for ExtraRelaxSize == 0.
Review: Ulrich Weigand
llvm-svn: 322688
This assert typically happens if an unstructured CFG is passed
to the pass. This can happen if the pass is run independently
without the structurizer.
llvm-svn: 322685
Summary:
Loading a vector of 4 half-precision FP sometimes results in an LD1
of 2 single-precision FP + a reversal. This results in an incorrect
byte swap due to the conversion from little endian to big endian.
In order to generate the correct byte swap, it is easier to
generate the correct LD1 of 4 half-precision FP, thus avoiding the
subsequent reversal.
Reviewers: craig.topper, jmolloy, olista01
Reviewed By: olista01
Subscribers: efriedma, samparker, SjoerdMeijer, rogfer01, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41863
llvm-svn: 322663