Well, sort of. But the lower-level code that invoke used to be using completely
botched the handling of varargs functions, which hopefully won't be possible if
they're using the same code.
llvm-svn: 293670
@ABS8 can be applied to symbols which appear as immediate operands to
instructions that have a 8-bit immediate form for that operand. It causes
the assembler to use the 8-bit form and an 8-bit relocation (e.g. R_386_8
or R_X86_64_8) for the symbol.
Differential Revision: https://reviews.llvm.org/D28688
llvm-svn: 293667
without symbols that makes calls through a symbol stub which were not
correctly being annotated with “## symbol stub for: _foo”.
Just adds the same parameters for getting the annotations from
DisAsm->getInstruction() and passing them to IP->printInst() from the
code above when boolean variable symbolTableWorked was true.
rdar://29791952
llvm-svn: 293662
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 293657
In clang, the grammar for mangling for these names are "<special-name> ::= TW <object name>" for wrapper variables or "<special-name> ::= TH <object name>" for initialization variables.
Initial change was made in libccxxabi r293638
llvm-svn: 293643
Summary:
For some reason instructions are being inserted in the wrong order with some
builds. I'm not sure why this is happening.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D29325
llvm-svn: 293639
Summary:
The affected transforms all implicitly use associativity of addition,
for which we usually require unsafe math to be enabled.
The "Aggressive" flag is only meant to convey information about the
performance of the fused ops relative to a fmul+fadd sequence.
Fixes Bug 31626.
Reviewers: spatel, hfinkel, mehdi_amini, arsenm, tstellarAMD
Subscribers: jholewinski, nemanjai, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D28675
llvm-svn: 293635
The Requires class overrides the target requirements of an instruction,
rather than adding to them, so all ARM instructions need to include the
IsARM predicate when they have overwitten requirements.
This caused the swp and swpb instructions to be allowed in thumb mode
assembly, and the ARM encoding of CDP to be selected in codegen (which
is different for conditional instructions).
Differential Revision: https://reviews.llvm.org/D29283
llvm-svn: 293634
transformToIndexedCompare
If they don't have the same type, the size of the constant
index would need to be adjusted (and this wouldn't be always
possible).
Alternatively we could try the analysis with the initial
RHS value, which would guarantee that the two sides have
the same type. However it is unlikely that in practice this
would pass our transformation requirements.
Fixes PR31808 (https://llvm.org/bugs/show_bug.cgi?id=31808).
llvm-svn: 293629
Also add the ability to recognise PINSR(Vex, 0, Idx).
Targets shuffle combines won't replace multiple insertions with a bit mask until a depth of 3 or more, so we avoid codesize bloat.
The unnecessary vpblendw in clearupper8xi16a will be fixed in an upcoming patch.
llvm-svn: 293627
Just adds the vmr (Vector Move Register) mnemonic for the VOR instruction in
the PPC back end.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29133
llvm-svn: 293626
Summary:
rL293124 added the necessary infrastructure to properly add the cloned
top level loop to LoopInfo, which means we do not have to do it manually
in CloneLoopBlocks.
@mkuper sorry for not pointing this out during my review of D29156, I just
realized that today.
Reviewers: mzolotukhin, chandlerc, mkuper
Reviewed By: mkuper
Subscribers: llvm-commits, mkuper
Differential Revision: https://reviews.llvm.org/D29173
llvm-svn: 293615
Summary:
This lets us lower to sqrt.approx and rsqrt.approx under more
circumstances.
* Now we emit sqrt.approx and rsqrt.approx for calls to @llvm.sqrt.f32,
when fast-math is enabled. Previously, we only would emit it for
calls to @llvm.nvvm.sqrt.f. (With this patch we no longer emit
sqrt.approx for calls to @llvm.nvvm.sqrt.f; we rely on intcombine to
simplify llvm.nvvm.sqrt.f into llvm.sqrt.f32.)
* Now we emit the ftz version of rsqrt.approx when ftz is enabled.
Previously, we only emitted rsqrt.approx when ftz was disabled.
Reviewers: hfinkel
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: https://reviews.llvm.org/D28508
llvm-svn: 293605
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
llvm-svn: 293598
For now just port some of the existing NVPTX tests
and from an old HSAIL optimization pass which
approximately did the same thing.
Don't enable the pass yet until more testing is done.
llvm-svn: 293580
Use the qualified name for StringLiteral (llvm::StringLiteral) when
generating the sources. This is needed as the generated files may be
used out-of-tree (e.g. swift) where you may not have a
`using namespace llvm;` resulting in an undefined lookup.
llvm-svn: 293577
Make SolveLinEquationWithOverflow take the start as a SCEV, so we can
solve more cases. With that implemented, get rid of the special case
for powers of two.
The additional functionality probably isn't particularly useful,
but it might help a little for certain cases involving pointer
arithmetic.
Differential Revision: https://reviews.llvm.org/D28884
llvm-svn: 293576
Summary:
In revision rL278321, ExecutionDepsFix learned how to pick a better
register for undef register reads, e.g. for instructions such as
`vcvtsi2sdq`. While this revision improved performance on a good number
of our benchmarks, it unfortunately also caused significant regressions
(up to 3x) on others. This regression turned out to be caused by loops
such as:
PH -> A -> B (xmm<Undef> -> xmm<Def>) -> C -> D -> EXIT
^ |
+----------------------------------+
In the previous version of the clearance calculation, we would visit
the blocks in order, remembering for each whether there were any
incoming backedges from blocks that we hadn't processed yet and if
so queuing up the block to be re-processed. However, for loop structures
such as the above, this is clearly insufficient, since the block B
does not have any unknown backedges, so we do not see the false
dependency from the previous interation's Def of xmm registers in B.
To fix this, we need to consider all blocks that are part of the loop
and reprocess them one the correct clearance values are known. As
an optimization, we also want to avoid reprocessing any later blocks
that are not part of the loop.
In summary, the iteration order is as follows:
Before: PH A B C D A'
Corrected (Naive): PH A B C D A' B' C' D'
Corrected (w/ optimization): PH A B C A' B' C' D
To facilitate this optimization we introduce two new counters for each
basic block. The first counts how many of it's predecssors have
completed primary processing. The second counts how many of its
predecessors have completed all processing (we will call such a block
*done*. Now, the criteria to reprocess a block is as follows:
- All Predecessors have completed primary processing
- For x the number of predecessors that have completed primary
processing *at the time of primary processing of this block*,
the number of predecessors that are done has reached x.
The intuition behind this criterion is as follows:
We need to perform primary processing on all predecessors in order to
find out any direct defs in those predecessors. When predecessors are
done, we also know that we have information about indirect defs (e.g.
in block B though that were inherited through B->C->A->B). However,
we can't wait for all predecessors to be done, since that would
cause cyclic dependencies. However, it is guaranteed that all those
predecessors that are prior to us in reverse postorder will be done
before us. Since we iterate of the basic blocks in reverse postorder,
the number x above, is precisely the count of the number of predecessors
prior to us in reverse postorder.
Reviewers: myatsina
Differential Revision: https://reviews.llvm.org/D28759
llvm-svn: 293571