we now may have identical states with different analysis context.
Set the right AnalysisContext in state when entering and leaving a callee.
With both of the above changes, we can pass the test case.
llvm-svn: 97724
that are hidden by other derived base subobjects reached along a
lookup path that does *not* pass through the hiding subobject (C++
[class.member.lookup]p6). Fixes PR6462.
llvm-svn: 97640
implemented a (codegen) target hook for __builtin_extend_pointer.
I'm also making it return a uint64_t instead of an unsigned word; this
comports with typical usage (i.e. the one use I know of).
I don't know if any of the existing targets requires this hook to be
set (other than x86 and x86_64, which I know do not).
llvm-svn: 97547
category. Use this in a few places to eliminate unnecessary TST cases and
do some future-proofing. Provide terrible manglings for typeof. Mangle
decltype with some hope of accuracy.
Our manglings for some of the cases covered in the testcase are different
from gcc's, which I've raised as an issue with the ABI list.
llvm-svn: 97523
which has the label map, switch statement stack, etc. Previously, we
had a single set of maps in Sema (for the function) along with a stack
of block scopes. However, this lead to funky behavior with nested
functions, e.g., in the member functions of local classes.
The explicit-stack approach is far cleaner, and we retain a 1-element
cache so that we're not malloc/free'ing every time we enter a
function. Fixes PR6382.
Also, tweaked the unused-variable warning suppression logic to look at
errors within a given Scope rather than within a given function. The
prior code wasn't looking at the right number-of-errors count when
dealing with blocks, since the block's count would be deallocated
before we got to ActOnPopScope. This approach works with nested
blocks/functions, and gives tighter error recovery.
llvm-svn: 97518
a fixme and PR6451.
Only perform jump checking if the containing function has no errors,
and add the infrastructure needed to do this.
On the testcase in the PR, we produce:
t.cc:6:3: error: illegal goto into protected scope
goto later;
^
t.cc:7:5: note: jump bypasses variable initialization
X x;
^
llvm-svn: 97497
template definition. Do this both by being more tolerant of errors in
our asserts and by not dropping a variable declaration completely when
its initializer is ill-formed. Fixes the crash-on-invalid in PR6375,
but not the original issue.
llvm-svn: 97463
an *almost* always incorrect case. This only does the lookahead
in the insanely unlikely case, so it shouldn't impact performance.
On this testcase:
struct foo {
}
typedef int x;
Before:
t.c:3:9: error: cannot combine with previous 'struct' declaration specifier
typedef int x;
^
After:
t.c:2:2: error: expected ';' after struct
}
^
;
llvm-svn: 97403
copy the source buffers provided rather than referencing them
directly, so that the caller can free those buffers immediately after
calling clang_createTranslationUnitFromSourceFile(). Otherwise, we
risk hitting those buffers later (when building source ranges, forming
diagnostics, etc.).
llvm-svn: 97296
Sema and into analyze_printf::ParseFormatString(). Also use a bitvector to determine
what arguments have been covered (instead of just checking to see if the last argument consumed is the max argument). This is prep. for support positional arguments (an IEEE extension).
llvm-svn: 97248
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
llvm-svn: 97221
how we find the operator delete that matches withe operator new we
found in a C++ new-expression.
This will also need CodeGen support. On a happy note, we're now a
"nans" away from building tramp3d-v4.
llvm-svn: 97209
equality comparisons, and conditional operators, produce a composite
pointer type with the appropriate additional "const" qualifiers if the
pointer types would otherwise be incompatible. This is a small
extension (also present in GCC and EDG in a slightly different form)
that permits code like:
void** i; void const** j;
i == j;
with the following extwarn:
t.cpp:5:5: warning: comparison of distinct pointer types ('void **' and
'void const **') uses non-standard composite pointer type
'void const *const *' [-pedantic]
i == j;
~ ^ ~
Fixes PR6346, and I'll be filing a core issue about this with the C++
committee.
llvm-svn: 97177
This patch implements the CallEnter/CallExit idea of Ted.
Add two interfaces to GRSubEngine: ProcessCallEnter, ProcessCallExit.
The CallEnter program point uses caller's location context. The
CallExit program point uses callee's location context.
CallEnter is built by GRStmtNodeBuilder. CallExit is built by
GREndPathNodeBuilder.
llvm-svn: 97122
class types, dependent types, and namespaces. I had previously
weakened this invariant while working on parsing pseudo-destructor
expressions, but recent work in that area has made these changes
unnecessary.
llvm-svn: 97112
This is the way I would like to move the frontend function towards -- distinct
pieces of functionality should be exposed only via FrontendAction
implementations which have clean and relatively-stable APIs.
This also isolates the surface area in clang which depends on LLVM CodeGen.
llvm-svn: 97110
expressions that look like pseudo-destructors, e.g.,
p->T::~T()
where p has dependent type.
At template instantiate time, we determine whether we actually have a
pseudo-destructor or a member access, and funnel down to the
appropriate routine in Sema.
Fixes PR6380.
llvm-svn: 97092
CXXPseudoDestructorExpr.
Update template instantiation for pseudo-destructor expressions to use
this source information and to make use of
Sema::BuildPseudoDestructorExpr when the base expression is dependent
or refers to a scalar type.
llvm-svn: 97079
pseudo-destructor expressions, and builds the CXXPseudoDestructorExpr
node directly. Currently, this only affects pseudo-destructor
expressions when they are parsed, but not after template
instantiation. That's coming next...
Improve parsing of pseudo-destructor-names. When parsing the
nested-name-specifier and we hit the sequence of tokens X :: ~, query
the actual module to determine whether X is a type-name (in which case
the X :: is part of the pseudo-destructor-name but not the
nested-name-specifier) or not (in which case the X :: is part of the
nested-name-specifier).
llvm-svn: 97058
destructor calls, e.g.,
p->T::~T
We now detect when the member access that we've parsed, e.g.,
p-> or x.
may be a pseudo-destructor expression, either because the type of p or
x is a scalar or because it is dependent (and, therefore, may become a
scalar at template instantiation time).
We then parse the pseudo-destructor grammar specifically:
::[opt] nested-name-specifier[opt] type-name :: ∼ type-name
and hand those results to a new action, ActOnPseudoDestructorExpr,
which will cope with both dependent member accesses of destructors and
with pseudo-destructor expressions.
This commit affects the parsing of pseudo-destructors, only; the
semantic actions still go through the semantic actions for member
access expressions. That will change soon.
llvm-svn: 97045
of the block descriptor field. This field is the ObjC style @encode
signature of the implementation function, and was to this point
conditionally provided in the block literal data structure. That
provisional support is removed.
Additionally, eliminate unused enumerations for the block literal flags field.
The first shipping ABI unconditionally set (1<<29) but this bit is unused
by the runtime, so the second ABI will unconditionally have (1<<30) set so
that the runtime can in fact distinguish whether the additional data is
present or not.
llvm-svn: 96989
1) emit base destructors as aliases to their unique base class destructors
under some careful conditions. This is enabled for the same targets that can
support complete-to-base aliases, i.e. not darwin.
2) Emit non-variadic complete constructors for classes with no virtual bases
as calls to the base constructor. This is enabled on all targets and in
theory can trigger in situations that the alias optimization can't (mostly
involving virtual bases, mostly not yet supported).
These are bundled together because I didn't think it worthwhile to split them,
not because they really need to be.
llvm-svn: 96842
errors, e.g.:
t.c:1:21: error: redefinition of parameter 'x'
int test(int x, int x);
^
t.c:1:14: note: previous declaration is here
int test(int x, int x);
^
llvm-svn: 96769
fixing up a few callers that thought they were propagating NoReturn
information but were in fact saying something about exception
specifications.
llvm-svn: 96766
typedef int Int;
int *p;
p->Int::~Int();
This weakens the invariant that the only types in nested-name-specifiers are tag types (restricted to class types in C++98/03). However, we weaken this invariant as little as possible, accepting arbitrary types in nested-name-specifiers only when we're in a member access expression that looks like a pseudo-destructor expression.
llvm-svn: 96743
are for out of line declarations more easily. This simplifies the logic and
handles the case of out-of-line class definitions correctly. Fixes PR6107.
llvm-svn: 96729
to initializer expressions in an array allocated using ASTContext.
This plugs a memory leak when ASTContext uses a BumpPtrAllocator to
allocate memory for AST nodes.
In my mind this isn't an ideal solution; it would be nice to have
a general "vector"-like class that allocates memory using ASTContext,
but whose guts could be separated from the methods of InitListExpr
itself. I haven't gone and taken this approach yet because it isn't
clear yet if we'll eventually want an alternate solution for recylcing
memory using by InitListExprs as we are constructing the ASTs.
llvm-svn: 96642
knobs to control formatting. Eventually, I'd like to merge the
implementation of this code with the TextDiagnosticPrinter, so that
it's easy for CIndex clients to produce beautiful diagnostics like the
clang compiler does.
Use this new function to display diagnostics within c-index-test.
llvm-svn: 96603
we attach diagnostics to translation units and code-completion
results, so they can be queried at any time.
To facilitate this, the new StoredDiagnostic class stores a diagnostic
in a serializable/deserializable form, and ASTUnit knows how to
capture diagnostics in this stored form. CIndex's CXDiagnostic is a
thin wrapper around StoredDiagnostic, providing a C interface to
stored or de-serialized diagnostics.
I've XFAIL'd one test case temporarily, because currently we end up
storing diagnostics in an ASTUnit that's never returned to the user
(because it contains errors). I'll introduce a temporary fix for this
soon; the real fix will be to allow us to return and query invalid ASTs.
llvm-svn: 96592
which describes temporary objects of class type in C++. Use this to
provide a more-specific, remappable diagnostic when takin the address
of such a temporary.
llvm-svn: 96396
now cope with the destruction of types named as dependent templates,
e.g.,
y->template Y<T>::~Y()
Nominally, we implement C++0x [basic.lookup.qual]p6. However, we don't
follow the letter of the standard here because that would fail to
parse
template<typename T, typename U>
X0<T, U>::~X0() { }
properly. The problem is captured in core issue 339, which gives some
(but not enough!) guidance. I expect to revisit this code when the
resolution of 339 is clear, and/or we start capturing better source
information for DeclarationNames.
Fixes PR6152.
llvm-svn: 96367
comparing their types under the assumption that they are equivalent,
rather than importing the types and then checking for compatibility. A
few minor tweaks here:
- Teach structural matching to handle compatibility between
function types with prototypes and those without prototypes.
- Teach structural matching that an incomplete record decl is the
same as any other record decl with the same name.
- Keep track of pairs of declarations that we have already checked
(but failed to find as structurally matching), so we don't emit
diagnostics repeatedly.
- When importing a typedef of an anonymous tag, be sure to link the
imported tag type to its typedef.
With these changes, we survive a repeated import of <stdlib.h> and
<stdio.h>. Alas, the ASTNodeImporter is getting a little grotty.
llvm-svn: 96298
two types in different AST contexts are equivalent. Rather than
transforming the type from one context into the other context, we
perform a deep structural comparison of the types. This change
addresses a serious problem with recursive data types like
struct ListNode {
int value;
struct ListNode *Next;
} xList;
llvm-svn: 96278
those declared in it. This is to allow duplicate
property diagnostics for properties declared in class extensions
multiple times (radar 7629420) and for future use.
llvm-svn: 96276
of operating on each code decl. This exposes two flaws in AnalysisConsumer
that should eventually be fixed:
(1) It is not possible to associate multiple "actions" with a single
command line argument. This will require the notion of an
"analysis" group, and possibly tablegen support. (although eventually
we want to support dynamically loading analyses as well)
(2) AnalysisConsumer may not actually be scanning the declarations in namespaces.
We'll experiment first in LLVMConventionsChecker before changing the
behavior in AnalysisConsumer.
llvm-svn: 96183
Currently these checks are intended to be largely syntactical, but may get more
sophisticated over time.
As an initial foray into this brave new world, emit a static analyzer warning
when binding a temporary 'std::string' to an 'llvm::StringRef' where the
lifetime of the 'std::string' does not outlive the 'llvm::StringRef'.
llvm-svn: 96147
or that's been hidden by a non-type (in C++).
The ideal C++ diagnostic here would note the hiding declaration, but this
is a good start.
llvm-svn: 96141
incompatibility and show where the structural differences are. For
example:
struct1.c:36:8: warning: type 'struct S7' has incompatible definitions
in different translation units
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct1.c:36:33: note: bit-field 'j' with type 'unsigned int' and length 8 here
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct2.c:33:33: note: bit-field 'j' with type 'unsigned int' and length 16 here
struct S7 { int i : 8; unsigned j : 16; } x7;
^
There are a few changes to make this work:
- ASTImporter now has only a single Diagnostic object, not multiple
diagnostic objects. Otherwise, having a warning/error printed via
one Diagnostic and its note printed on the other Diagnostic could
cause the note to be suppressed.
- Implemented import functionality for IntegerLiteral (along with
general support for statements and expressions)
llvm-svn: 95900
Enhance the printf format string checking when using the format
specifier flags ' ', '0', '+' with the 'p' or 's' conversions (since
they are nonsensical and undefined). This is similar to GCC's
checking.
Also warning when a precision is used with the 'p' conversin
specifier, since it has no meaning.
llvm-svn: 95869
Right now, it's off by default but can be tested by passing -fdump-vtable-layouts to clang -cc1. This option will cause all vtables that will normally be emitted as part of codegen to also be dumped using the new layout code.
I've also added a very simple new vtable layout test case.
llvm-svn: 95865
array associated with NonNullAttr. This fixes yet another leak when
ASTContext uses a BumpPtrAllocator.
Fixes: <rdar://problem/7637150>
llvm-svn: 95863
storing the set of StoredDeclsMaps in an internal vector of void*.
This isn't an ideal solution, but for the time being this fixes a
major memory leak with these DenseMaps not being freed.
Fixes: <rdar://problem/7634755>
llvm-svn: 95861
array allocated using the allocator in ASTContext. This addresses
these strings getting leaked when using a BumpPtrAllocator (in
ASTContext).
Fixes: <rdar://problem/7636765>
llvm-svn: 95853
attribute, so it uses Anton's new target-specific attribute support. It's
supposed to ensure that the stack is 16-byte aligned, but since necessary
support is lacking from LLVM, this is a no-op for now.
llvm-svn: 95820
conversions. Fix an access-control bug where privileges were not considered
at intermediate points along the inheritance path. Prepare for friends.
llvm-svn: 95775
into another AST, including their include history. Here's an example
error that involves a conflict merging a variable with different types
in two translation units (diagnosed in the third AST context into
which everything is merged).
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var2.c:3:5:
error: external variable 'x2' declared with incompatible types in
different translation units ('int' vs. 'double')
int x2;
^
In file included from
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.c:3:
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.h:1:8:
note: declared here with type 'double'
double x2;
^
Although we maintain include history, we do not maintain macro
instantiation history across a merge. Instead, we map down to the
spelling location (for now!).
llvm-svn: 95732
This is a non-fragile-abi feature only. Since it
breaks existing code, it is currently placed under
-fobjc-nonfragile-abi2 option for test purposes only
until further notice. WIP.
llvm-svn: 95685
follows (as conservatively as possible) gcc's current behavior: attributes
written on return types that don't apply there are applied to the function
instead, etc. Only parse CC attributes as type attributes, not as decl attributes;
don't accepet noreturn as a decl attribute on ValueDecls, either (it still
needs to apply to other decls, like blocks). Consistently consume CC/noreturn
information throughout codegen; enforce this by removing their default values
in CodeGenTypes::getFunctionInfo().
llvm-svn: 95436
one context and import them into another context, merging them
according to language-specific rules. This is a skeleton. It doesn't
work, it isn't testable, but I want it in version control.
llvm-svn: 95395
of a C++ record. Exposed a lot of problems where various routines were
silently doing The Wrong Thing (or The Acceptable Thing in The Wrong Order)
when presented with a non-definition. Also cuts down on memory usage.
llvm-svn: 95330
direct bit manipulation. This is is less error prone, and fixes a bug
in the handling of the LeadingZeroes flag as pointed out by Cristian
Draghici.
llvm-svn: 95298
that is in an anonymous namespace, give that function or variable
internal linkage.
This change models an oddity of the C++ standard, where names declared
in an anonymous namespace have external linkage but, because anonymous
namespace are really "uniquely-named" namespaces, the names cannot be
referenced from other translation units. That means that they have
external linkage for semantic analysis, but the only sensible
implementation for code generation is to give them internal
linkage. We now model this notion via the UniqueExternalLinkage
linkage type. There are several changes here:
- Extended NamedDecl::getLinkage() to produce UniqueExternalLinkage
when the declaration is in an anonymous namespace.
- Added Type::getLinkage() to determine the linkage of a type, which
is defined as the minimum linkage of the types (when we're dealing
with a compound type that is not a struct/class/union).
- Extended NamedDecl::getLinkage() to consider the linkage of the
template arguments and template parameters of function template
specializations and class template specializations.
- Taught code generation to rely on NamedDecl::getLinkage() when
determining the linkage of variables and functions, also
considering the linkage of the types of those variables and
functions (C++ only). Map UniqueExternalLinkage to internal
linkage, taking out the explicit checks for
isInAnonymousNamespace().
This fixes much of PR5792, which, as discovered by Anders Carlsson, is
actually the reason behind the pass-manager assertion that causes the
majority of clang-on-clang regression test failures. With this fix,
Clang-built-Clang+LLVM passes 88% of its regression tests (up from
67%). The specific numbers are:
LLVM:
Expected Passes : 4006
Expected Failures : 32
Unsupported Tests : 40
Unexpected Failures: 736
Clang:
Expected Passes : 1903
Expected Failures : 14
Unexpected Failures: 75
Overall:
Expected Passes : 5909
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 811
Still to do:
- Improve testing
- Check whether we should allow the presence of types with
InternalLinkage (in addition to UniqueExternalLinkage) given
variables/functions internal linkage in C++, as mentioned in
PR5792.
- Determine how expensive the getLinkage() calls are in practice;
consider caching the result in NamedDecl.
- Assess the feasibility of Chris's idea in comment #1 of PR5792.
llvm-svn: 95216
- Requires backend support, which only exists for i386--darwin currently.
No 'as' required:
--
ddunbar@ozzy:tmp$ cat t.c
int main() { return 42; }
ddunbar@ozzy:tmp$ clang -m32 -integrated-as t.c
ddunbar@ozzy:tmp$ ./a.out; echo $?
42
ddunbar@ozzy:tmp$
--
The random extra whitespace is how you know its working! :)
llvm-svn: 95194
- Don't use GlobalAliases with non-0 GEPs (GNU runtime) - this was unsupported and LLVM will be generating errors if you do it soon. This also simplifies the code generated by the GNU runtime a bit.
- Make GetSelector() return a constant (GNU runtime), not a load of a store of a constant.
- Recognise @selector() expressions as valid static initialisers (as GCC does).
- Add methods to GCObjCRuntime to emit selectors as constants (needed for using @selector() expressions as constants. These need implementing for the Mac runtimes - I couldn't figure out how to do this, they seem to require a load.
- Store an ObjCMethodDecl in an ObjCSelectorExpr so that we can get at the type information for the selector. This is needed for generating typed selectors from @selector() expressions (as GCC does). Ideally, this information should be stored in the Selector, but that would be an invasive change. We should eventually add checks for common uses of @selector() expressions. Possibly adding an attribute that can be applied to method args providing the types of a selector so, for example, you'd do something like this:
- (id)performSelector: __attribute__((selector_types(id, SEL, id)))(SEL)
withObject: (id)object;
Then, any @selector() expressions passed to the method will be check to ensure that it conforms to this signature. We do this at run time on the GNU runtime already, but it would be nice to do it at compile time on all runtimes.
- Made @selector() expressions emit type info if available and the runtime supports it.
Someone more familiar with the Mac runtime needs to implement the GetConstantSelector() function in CGObjCMac. This currently just assert()s.
llvm-svn: 95189
forgetting a ';' at the end of a struct. For something like:
class c {
}
void foo() {}
we now produce:
t.cc:3:2: error: expected ';' after class
}
^
;
instead of:
t.cc:4:1: error: cannot combine with previous 'class' declaration specifier
void foo() {}
^
t.cc:2:7: error: 'class c' can not be defined in the result type of a function
class c {
^
GCC produces:
t.cc:4: error: new types may not be defined in a return type
t.cc:4: note: (perhaps a semicolon is missing after the definition of ‘c’)
t.cc:4: error: two or more data types in declaration of ‘foo’
I *think* I got the follow set right, but if I forgot anything, we'll start
getting spurious "expected ';' after class" errors, let me know if you see
any.
llvm-svn: 95042
- In C++, prior to the closing '}', set the type of enumerators
based on the type of their initializer. Don't perform unary
conversions on the enumerator values.
- In C++, handle overflow when an enumerator has no initializer and
its value cannot be represented in the type of the previous
enumerator.
- In C, handle overflow more gracefully, by complaining and then
falling back to the C++ rules.
- In C, if the enumerator value is representable in an int, convert the
expression to the type 'int'.
Fixes PR5854 and PR4515.
llvm-svn: 95031
by setting the section of the generated global. This is an
optimization done by the code generator, and the code being
removed didn't handle the case when the string contained an
embedded nul (which the code generator does correctly
handle). This is rdar://7589850
llvm-svn: 95003