Previously we'd complain about redefinition of default arguments when we
instantiated a class with a friend template that inherits its default argument,
because we propagate the default template arguemnt onto the friend when we
reload the AST.
llvm-svn: 239857
There are still problems here, but this is a better starting point.
The main part of the change is: when doing a lookup that would accept visible
or hidden declarations, prefer to produce the latest visible declaration if
there are any visible declarations, rather than always producing the latest
declaration.
Thus, when we inherit default arguments (and other properties) from a previous
declaration, we inherit them from the previous visible declaration; if the
previous declaration is hidden, we already suppress inheritance of default
arguments.
There are a couple of other changes here that fix latent bugs exposed by this
change.
llvm-svn: 239371
visibility is enabled) or leave and re-enter it, restore the macro and module
visibility state from last time we were in that submodule.
This allows mutually-#including header files to stand a chance at being
modularized with local visibility enabled.
llvm-svn: 237871
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
if the merged definition is visible, and perform lookups into all merged copies
of the definition (not just for special members) so that we can complete the
redecl chains for members of the class.
llvm-svn: 233420
constructors in the current lexical context even though name lookup
found them via some other context merged into the redecl chain.
This can only happen for implicit constructors which can only have the
name of the type of the current context, so we can fix this by simply
*always* merging those names first. This also has the advantage of
removing the walk of the current lexical context from the common case
when this is the only constructor name we need to deal with (implicit or
otherwise).
I've enhanced the tests to cover this case (and uncovered an unrelated
bug which I fixed in r233325).
llvm-svn: 233327
templates. Turns out all of this works correctly (so far). But it should
cover more code paths and will let me test some things that don't
actually work next.
llvm-svn: 233263
deterministically.
This fixes a latent issue where even Clang's Sema (and diagnostics) were
non-deterministic in the face of this pragma. The fix is super simple --
just use a MapVector so we track the order in which these are parsed (or
imported). Especially considering how rare they are, this seems like the
perfect tradeoff. I've also simplified the client code with judicious
use of auto and range based for loops.
I've added some pretty hilarious code to my stress test which now
survives the binary diff without issue.
llvm-svn: 233261
non-visible definition, skip the new definition and make the old one visible
instead of trying to parse it again and failing horribly. C++'s ODR allows
us to assume that the two definitions are identical.
llvm-svn: 233250
This fixes my stress tests non-determinism so far. However, I've not
started playing with templates, friends, or terrible macros. I've found
at least two more seeming instabilities and am just waiting for a test
case to actually trigger them.
llvm-svn: 233162
There are two aspects of non-determinism fixed here, which was the
minimum required to cause at least an empty module to be deterministic.
First, the random number signature is only inserted into the module when
we are building modules implicitly. The use case for these random
signatures is to work around the very fact that modules are not
deterministic in their output when working with the implicitly built and
populated module cache. Eventually this should go away entirely when
we're confident that Clang is producing deterministic output.
Second, the on-disk hash table is populated based on the order of
iteration over a DenseMap. Instead, use a MapVector so that we can walk
it in insertion order.
I've added a test that an empty module, when built twice, produces the
same binary PCM file.
llvm-svn: 233115
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
give an exception specification to a declaration that didn't have an exception
specification in any of our imported modules, emit an update record ourselves.
Without this, code importing the current module would not see an exception
specification that we could see and might have relied on.
llvm-svn: 232870
consumers of that module.
Previously, such a file would only be available if the module happened to
actually import something from that module.
llvm-svn: 232583
namespace to not merge properly.
We have an invariant here: after a declaration reads its canonical declaration,
it can assume the canonical declaration is fully merged. This invariant can be
violated if deserializing some declaration triggers the deserialization of a
later declaration, because that later declaration can in turn deserialize a
redeclaration of that first declaration before it is fully merged.
The anonymous namespace for a namespace gets stored with the first declaration
of that namespace, which may be before its parent namespace, so defer loading
it until after we've finished merging the surrounding namespace.
llvm-svn: 232455
building its redecl chains, make sure we pull in the redeclarations of those
canonical declarations.
It's pretty difficult to reach a situation where we can find more canonical
declarations of an entity while building its redecl chains; I think the
provided testcase (4 modules and 7 declarations) cannot be reduced further.
llvm-svn: 232411
with a subset of the existing target CPU features or mismatched CPU
names.
While we can't check that the CPU name used to build the module will end
up being able to codegen correctly for the translation unit, we actually
check that the imported features are a subset of the existing features.
While here, rewrite the code to use std::set_difference and have it
diagnose all of the differences found.
Test case added which walks the set relationships and ensures we
diagnose all the right cases and accept the others.
No functional change for implicit modules here, just better diagnostics.
llvm-svn: 232248
headers even if they arrived when merging non-system modules.
The idea of this code is that we don't want to warn the user about
macros defined multiple times by their system headers with slightly
different definitions. We should have this behavior if either the
macro comes from a system module, or the definition within the module
comes from a system header. Previously, we would warn on ambiguous
macros being merged when they came from a users modules even though they
only showed up via system headers.
By surviving this we can handle common system header macro differences
like differing 'const' qualification of pointers due to some headers
predating 'const' being valid in C code, even when those systems headers
are pre-built into a system module.
Differential Revision: http://reviews.llvm.org/D8310
llvm-svn: 232149
definition, be sure to update the definition data on all declarations, not just
the canonical one, since the pattern might not be in the list of pending
definitions (if it used to be canonical itself).
One-line fix by me; reduced testcase by Daniel Jasper!
llvm-svn: 231950
specification, update all prior declarations if the new one has an explicit
exception specification and the prior ones don't.
Patch by Vassil Vassilev! Some minor tweaking and test case by me.
llvm-svn: 231738
move the operator delete updating into a separate update record so we can cope
with updating another module's destructor's operator delete.
llvm-svn: 231735
one can give us more lookup results (due to implicit special members). Be sure
to complete the redecl chain for every kind of DeclContext before performing a
lookup into it, rather than only doing so for NamespaceDecls.
llvm-svn: 230558
This would cause frameworks to have spurious "redefinition" errors if
they had both a (legacy) "module.map" and a (new) "module.modulemap" file and we
happened to do a sub-directory search in that directory using a
non-framework include path (e.g. -Ifoo/ -Ffoo/). For migration
purposes it's very handy that the compiler will prefer the new spelling
of the filename and not look at the old one if it doesn't need to.
llvm-svn: 230308
bug is not actually modules-specific, but it's a little tricky to tickle it
outside of modules builds, so submitting with the reduced testcase I have.
llvm-svn: 230303
If this flag is set, we error out when a module build is required. This is
useful in environments where all required modules are passed via -fmodule-file.
llvm-svn: 230006
entity, put the originally-canonical decl IDs in the right places in the redecl
chain rather than reordering them all to the start. If we don't ensure that the
redecl chain order is consistent with the topological module order, we can fail
to make a declaration visible if later declarations are in more IDNSs than
earlier ones (for instance, because the earlier decls are invisible friends).
llvm-svn: 228978
already have, check whether the name from the module is actually newer than the
existing declaration. If it isn't, we might (say) replace a visible declaration
with an injected friend, and thus make it invisible (or lose a default argument
or an array bound).
llvm-svn: 228661
context as anonymous for merging purposes. They can't be found by their names,
so we merge them based on their position within the surrounding context.
llvm-svn: 228485
of that entity, ensure that the redeclaration chain is reordered properly on
reload. Otherwise, the result of name lookup for that entity may point to an
entity that is too old; if that's an injected friend name or the like, that
can result in the name not being found at all.
llvm-svn: 228371
object. In such a case, use the TU's DC for merging global decls rather than
giving up when we find there is no TU scope.
Ultimately, we should probably avoid all loading of decls when preprocessing,
but there are other reasonable use cases for loading an AST file with no Sema
object for which this is the right thing.
llvm-svn: 228234
encountered any definition for the class; this happens when the definition is
added by an update record that is not yet loaded. In such a case, eagerly pick
the original parent of the member as the canonical definition of the class
rather than muddling through with the canonical declaration (the latter can
lead to us failing to merge properly later if the canonical definition turns
out to be some other declaration).
llvm-svn: 226977
* Put all input files under Inputs/, move corresponding tests into test/Modules.
* Rename a modulemap test file to [...].modulemap, and teach lit that such files are tests.
llvm-svn: 226875
record, and that class declaration is not the canonical definition of the
class, be sure to add the class to the list of classes that are consulted when
we look up a special member in the canonical definition.
llvm-svn: 226778
on top of a local declaration of the same entity, we still need to remember
that we loaded the first one or we may fail to merge the second one properly.
llvm-svn: 226765
load the definition data from the declaration itself. In that case, merge
properly; don't assume the prior definition is the same as our own.
llvm-svn: 226761
Importing _Builtin_intrinsics.sse and avx would transitively pull in those
headers, and the test would fail when building in an environment where
they were not available on the include path.
This fixes PR20995 for me.
Differential Revision: http://reviews.llvm.org/D7112
llvm-svn: 226754
If a module map contains
framework module * [extern_c] {}
We will now infer [extern_c] on the inferred framework modules (we
already inferred [system] as a special case).
llvm-svn: 225803
This just tweaks the fix from r224892 (which handled PCHs) to work with
modules, where we will serialize each method individually and hence the
hasMoreThanOneDecl bit needs to be updated as we add the methods.
llvm-svn: 225659
components. These sometimes get synthetically added, and we don't want -Ifoo
and -I./foo to be treated fundamentally differently here.
llvm-svn: 224055
Original commit message:
[modules] Add experimental -fmodule-map-file-home-is-cwd flag to -cc1.
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223913
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223753
module, use the path from the module map file in preference to the path from
the .pcm file when resolving relative paths in the .pcm file. This allows
diagnostics (and .d output) to give relative paths if the module was found via
a relative path.
llvm-svn: 223577
This was not a real header role, and was never exposed to clients of ModuleMap.
Remove the enumeration value for it and track it as marking the header as
'known' rather than creating an extra KnownHeader entry that *every single*
client ignores.
llvm-svn: 220460
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
Implicit module builds are not well-suited to a lot of build systems. In
particular, they fare badly in distributed build systems, and they lead to
build artifacts that are not tracked as part of the usual dependency management
process. This change allows explicitly-built module files (which are already
supported through the -emit-module flag) to be explicitly loaded into a build,
allowing build systems to opt to manage module builds and dependencies
themselves.
This is only the first step in supporting such configurations, and it should
be considered experimental and subject to change or removal for now.
llvm-svn: 220359
#include_next interacts poorly with modules: it depends on where in the list of
include paths the current file was found. Files covered by module maps are not
found in include search paths when building the module (and are not found in
include search paths when @importing the module either), so this isn't really
meaningful. Instead, we fake up the result that #include_next *should* have
given: find the first path that would have resulted in the given file being
picked, and search from there onwards.
llvm-svn: 220177