Summary:
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
I wasn't sure who to put as reviewers, so please add/remove people as appropriate.
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319423
Normal type legalization will widen everything. This requires forcing 0s into the mask register. We can instead choose the form that only reads 2 elements without zeroing the mask.
llvm-svn: 319406
If we put in an assertsext/zext here, we're able to generate better truncate code using pack on pre-avx512 targets.
Similar is already done during type legalization. This is the equivalent for op legalization
Differential Revision: https://reviews.llvm.org/D40591
llvm-svn: 319368
Previously we had an isel pattern to add the truncate. Instead use Promote to add the truncate to the DAG before isel.
The Promote legalization code had to be updated to prevent an infinite loop if promotion took multiple steps because it wasn't remembering the previously tried value.
llvm-svn: 319259
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Looking through Agner, FTST is very similar to generic float compare behaviour, so I've added them to the existing IIC_FCOMI (WriteFAdd) tags.
llvm-svn: 319184
Atom's FABS/FCHS/FSQRT latencies taken from Agner.
Note: I just added FSIN and FCOS to the existing IIC_FSINCOS itinerary, which is actually a more costly instruction.
llvm-svn: 319175
The priorities in the section name suffixes are zero padded,
allowing the linker to just do a lexical sort.
Add zero padding for .ctors sections in ELF as well.
Differential Revision: https://reviews.llvm.org/D40407
llvm-svn: 319150
Unoptimized IR can have linear sequences of stores to an array, where the
initial GEP for the first store is formed from the pointer to the array, and the
GEP for each store after the first is formed from the previous GEP with some
offset in an inductive fashion.
The (large) resulting DAG when analyzed by DAGCombine undergoes an excessive
number of combines as each store node is examined every time its' offset node
is combined with any child of the offset. One of the transformations is
findBetterNeighborChains which assists MergeConsecutiveStores. The former
relies on repeated chain walking to do its' work, however MergeConsecutiveStores
is disabled at O0 which makes the transformation redundant.
Any optimization level other than O0 would invoke InstCombine which would
resolve the chain of GEPs into flat base + offset GEP for each store which
does not exhibit the repeated examination of each store to the array.
Disabling this optimization fixes an excessive compile time issue (30~ minutes
for the test case provided) at O0.
Reviewers: niravd, craig.topper, t.p.northover
Differential Revision: https://reviews.llvm.org/D40193
llvm-svn: 319142
With AVX512 vXi1 types are legal so we shouldn't be extending them.
This change is similar to existing code in the zext(setcc) combine.
llvm-svn: 319120
Which VTs are considered simple is determined by the superset of the legal types of all targets in LLVM. If we're looking at VTs that are going to be split down to 512-bits we should allow any VT not just simple ones since the simple list changes over time as new targets are added.
llvm-svn: 319110
Similar for vXi16/vXi8 with BWI.
Any vector larger than 512 bits will be split to 512 bits during legalization. But without this we will fold sexts with them before that making it difficult to recover leading to scalarization.
llvm-svn: 319059
Shadow stack solution introduces a new stack for return addresses only.
The HW has a Shadow Stack Pointer (SSP) that points to the next return address.
If we return to a different address, an exception is triggered.
The shadow stack is managed using a series of intrinsics that are introduced in this patch as well as the new register (SSP).
The intrinsics are mapped to new instruction set that implements CET mechanism.
The patch also includes initial infrastructure support for IBT.
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
Differential Revision: https://reviews.llvm.org/D40223
Change-Id: I4daa1f27e88176be79a4ac3b4cd26a459e88fed4
llvm-svn: 318996
Summary:
These instructions zero the non-scalar part of the lower 128-bits which makes them different than the FMA3 instructions which pass through the non-scalar part of the lower 128-bits.
I've only added fmadd because we should be able to derive all other variants using operand negation in the intrinsic header like we do for AVX512.
I think there are still some missed negate folding opportunities with the FMA4 instructions in light of this behavior difference that I hadn't noticed before.
I've split the tests so that we can use different intrinsics for scalar testing between the two. I just copied the tests split the RUN lines and changed out the scalar intrinsics.
fma4-fneg-combine.ll is a new test to make sure we negate the fma4 intrinsics correctly though there are a couple TODOs in it.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39851
llvm-svn: 318984
Summary:
This adds a new fast gather feature bit to cover all CPUs that support fast gather that we can use independent of whether the AVX512 feature is enabled. I'm only using this new bit to qualify AVX2 codegen. AVX512 is still implicitly assuming fast gather to keep tests working and to match the scatter behavior.
Test command lines have been added for these two cases.
Reviewers: magabari, delena, RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40282
llvm-svn: 318983
v4i32 isn't a legal type with sse1 only and would end up getting scalarized otherwise.
This isn't completely ideal as it doesn't handle cases like v8i32 that would get split to v4i32. But it at least helps with code written using the clang intrinsic header.
llvm-svn: 318967
This optimization can occur after type legalization and emit a vselect with v4i32 type. But that type is not legal with sse1. This ultimately gets scalarized by the second type legalization that runs after vector op legalization, but that's really intended to handle the scalar types that might be introduced by legalizing vector ops.
For now just stop this from happening by disabling the optimization with sse1.
llvm-svn: 318965
The NewCC variable is calculated outside of the loop that processes jcc/setcc/cmovcc instructions. If we invert it during the loop it can cause an incorrect value to be used by a later iteration. Instead only read it during the loop and use a new variable to store the possibly inverted value.
Fixes PR35399.
llvm-svn: 318934
(V)PHMINPOSUW determines the UMIN element in an v8i16 input, with suitable bit flipping it can also be used for SMAX/SMIN/UMAX cases as well.
This patch matches vXi16 SMAX/SMIN/UMAX/UMIN horizontal reductions and reduces the input down to a v8i16 vector before calling (V)PHMINPOSUW.
A later patch will use this for v16i8 reductions as well (PR32841).
Differential Revision: https://reviews.llvm.org/D39729
llvm-svn: 318917
Normally this would be cleaned up by promoting the condition operand next. But in the attached case we promoted the result from v2i48 to v2i64 and the condition from v2i1 to v2i48. Then we tried to "promote" the v2i48 condition back to v2i1 because that's what the SetCC result type for v2i64 is on X86 with VLX. But promote is either a NOP or SIGN_EXTEND and this would need a truncation.
With the change here we now get the SetCC type of v2i1 when we're handling the result promotion and the operand no longer needs to be promoted itself.
Fixes PR35272.
llvm-svn: 318706
MachineSink attempts to place instructions near the basic blocks where
they are needed. Once an instruction has been sunk, its location
relative to other instructions is no longer consistent with the
original source code. In order to ensure correct single-stepping and
profiling, the debug location for sunk instructions is either merged
with the insertion point or erased if the target successor block is
empty.
Patch by Matthew Voss!
Differential Revision: https://reviews.llvm.org/D39933
llvm-svn: 318679
PR34553 has gone, adding tests to ensure it doesn't come back.
vselect_packss_v16i64 still has some awful codegen on AVX512 targets....
llvm-svn: 318599
This makes sure that functions that only clobber xmm registers
(on win64) also get the right cfi directives, if dwarf exceptions
are enabled.
Differential Revision: https://reviews.llvm.org/D40191
llvm-svn: 318591
Only do this pre-legalize in case we're using the sign extend to legalize for KNL.
This recovers all of the tests that changed when I stopped SelectionDAGBuilder from deleting sign extends.
There's more work that could be done here particularly to fix the i8->i64 test case that experienced split.
llvm-svn: 318468
Previously SelectionDAGBuilder would remove this sign extend leading to a failure during isel.
The codegen here isn't very nice as we ended up triggering a split.
llvm-svn: 318467
The sign extend might be from an i16 or i8 type and was inserted by InstCombine to match the pointer width. X86 gather legalization isn't currently detecting this to reinsert a sign extend to make things legal.
It's a bit weird for the SelectionDAGBuilder to do this kind of optimization in the first place. With this removed we can at least lean on InstCombine somewhat to ensure the index is i32 or i64.
I'll work on trying to recover some of the test cases by removing sign extends in the backend when its safe to do so with an understanding of the current legalizer capabilities.
This should fix PR30690.
llvm-svn: 318466
The wider element type will normally cause legalize to try to split and scalarize the gather/scatter, but we can't handle that. Instead, truncate the index early so the gather/scatter node is insulated from the legalization.
This really shouldn't happen in practice since InstCombine will normalize index types to the same size as pointers.
llvm-svn: 318452
The type legalizer will try to scalarize these operations if it sees them, but there is no handling for scalarizing them. This leads to a fatal error. With this change they will now be scalarized by the mem intrinsic scalarizing pass before SelectionDAG.
llvm-svn: 318380
Some CPUs are already overriding these sign extension instructions but we should be able to use the WriteALU schedule class by default.
Differential Revision: https://reviews.llvm.org/D39899
llvm-svn: 318308
The test was doing -stop-after=isel, but that pass is actually the
AMDGPUDAGToDAGISel pass, which might not be built when targeting x86_64.
This changes the test to -stop-after=expand-isel-pseudos instead.
Follow-up to r318202.
llvm-svn: 318220
artifacts along with DCE
Legalization Artifacts are all those insts that are there to make the
type system happy. Currently, the target needs to say all combinations
of extends and truncs are legal and there's no way of verifying that
post legalization, we only have *truly* legal instructions. This patch
changes roughly the legalization algorithm to process all illegal insts
at one go, and then process all truncs/extends that were added to
satisfy the type constraints separately trying to combine trivial cases
until they converge. This has the added benefit that, the target
legalizerinfo can only say which truncs and extends are okay and the
artifact combiner would combine away other exts and truncs.
Updated legalization algorithm to roughly the following pseudo code.
WorkList Insts, Artifacts;
collect_all_insts_and_artifacts(Insts, Artifacts);
do {
for (Inst in Insts)
legalizeInstrStep(Inst, Insts, Artifacts);
for (Artifact in Artifacts)
tryCombineArtifact(Artifact, Insts, Artifacts);
} while(!Insts.empty());
Also, wrote a simple wrapper equivalent to SetVector, except for
erasing, it avoids moving all elements over by one and instead just
nulls them out.
llvm-svn: 318210
This patch peels off the top case in switch statement into a branch if the
probability exceeds a threshold. This will help the branch prediction and
avoids the extra compares when lowering into chain of branches.
Differential Revision: http://reviews.llvm.org/D39262
llvm-svn: 318202
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.
This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)
LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.
Differential Revision: https://reviews.llvm.org/D39287
llvm-svn: 318195
Summary:
Bypass of slow divs based on operand values is currently disabled for
-Os. Do the same when profile summary is available and the working set
size of the application is huge. This is similar to how loop peeling is
guarded by hasHugeWorkingSetSize. In the div bypass case, the generated
extra code (and the extra branch) tendss to outweigh the benefits of the
bypass. This results in noticeable performance improvement on an
internal application.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39992
llvm-svn: 318179
If the base of our gather corresponds to something contained in X86ISD::Wrapper we should be able to fold it into the address.
This patch refactors some of the address matching to more fully use the X86ISelAddressMode struct and the getAddressOperands helper. A new helper function matchVectorAddress is added to call matchWrapper or fall back to matchAddressBase.
We should also be able to support constant offsets from a wrapper, but I'll look into that in a future patch. We may even be able to completely reuse matchAddress here, but I wanted to start simple and work up to it.
Differential Revision: https://reviews.llvm.org/D39927
llvm-svn: 318057
Remove builtins from llvm and add AutoUpgrade support.
Also add fast-isel tests for the TEST and TESTN instructions.
Differential Revision: https://reviews.llvm.org/D38736
llvm-svn: 318036
This patch, together with a matching clang patch (https://reviews.llvm.org/D38672), implements the lowering of X86 shuffle i/f intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38671
Change-Id: I1e7d359a74743e995ec356237a85214ce55d3661
llvm-svn: 318026
Updated the scheduling information of the SKX subtarget in the file X86SchedSkylakeServer.td under lib/Target/X86 to:
1. add regular opcodes in addition to the suffixed "_Int" opcodes
2. add the (V)MAXCPD/MAXCPS/MAXCSD/MAXCSS/MINCPD/MINCPS/MINCSD/MINCSS
instructions that are equivalent to their counterparts without the 'C' as they are part of a hack to
make floating point min/max commutable under fast math.
Reviewers: zvi, RKSimon, craig.topper
Differential Revision: https://reviews.llvm.org/D39833
Change-Id: Ie13702a5ce1b1a08af91ca637a52b6962881e7d6
llvm-svn: 318024
The VRNDSCALE instructions implement a superset of the (V)ROUND instructions. They are equivalent if the upper 4-bits of the immediate are 0.
This patch lowers the legacy intrinsics to the VRNDSCALE ISD node and masks the upper bits of the immediate to 0. This allows us to take advantage of the larger register encoding space.
We should maybe consider converting VRNDSCALE back to VROUND in the EVEX to VEX pass if the extended registers are not being used.
I notice some load folding opportunities being missed for the VRNDSCALESS/SD instructions that I'll try to fix in future patches.
llvm-svn: 318008