Extension to rG74f98391a7a4, we can also include any of the upper (known zero) bits in the comparison in the shuffle removal fold, just as long as we demand all the elements of the movmsk source vector.
This fixes breakage on Windows/ARM64 after D94355.
Modelled after the corresponding code for X86; not entirely familiar
with those aspects of that layer otherwise.
Differential Revision: https://reviews.llvm.org/D99572
Patchpoint instructions have operands which is actually zero cost
(or the same as register) to use the value from the stack.
In terms of statistic it makes same to separate them.
Move from computation instructions related to stack spill/reload to
number of stack slot referenced.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100016
Statepoint instruction has a deopt section which is actually live-through the call.
Currently this is handled by special post pass after RA - fixup-statepoint-caller-saved.
This change teaches Greedy RA that if segment of live interval is ended with statepoint
instruction and its reg is used in deopt bundle then this live interval interferes regmask of this statepoint
and as a result caller-saved register cannot be assigned to this live interval.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100296
M68kAsmParser uses `llvm::getTheM68kTarget` from M68kInfo, therefore we
should put M68kInfo as its direct dependency. Otherwise the build will
fail when building LLVM libraries as shared objects (building LLVM
libraries statically won't have this problem though).
This is a follow up of D99010. We didn't consider the live range of shape registers when hoist ldtilecfg. There maybe risks, e.g. we happen to insert it to an invalid range of some registers and get unexpected error.
This patch fixes this problem by storing the value to corresponding stack place of ldtilecfg after all its definition immediately.
This patch also fix a problem in previous code: If we don't have a ldtilecfg which dominates all AMX instructions, we cannot initialize shapes for other ldtilecfg.
There're still some optimization points left. E.g. eliminate unused mov instructions, break the def-use dependency before RA etc.
Reviewed By: LuoYuanke, xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D99966
The VSX tablegen file has some rather eggregious uses of
COPY_TO_REGCLASS even in situations where it needs to use
SUBREG_TO_REG. While this produces correct code, it often doesn't
allow the register coalescer to coalesce copies and the resulting
code ends up being suboptimal. This patch just changes over
patterns that should use SUBREG_TO_REG.
This fixes the resolution of Rec10.Zero in ListSlices.td.
As part of this, correct the definition of complete for ListInit such that
it's complete iff all the elements in the list are complete rather than
always being complete regardless of the elements. This is the reason
Rec10.TwoFive from ListSlices.td previously resolved despite being
incomplete like Rec10.Zero was
Depends on D100247
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D100253
- Add support for HLASM style integers. These are the decimal integers [0-9].
- HLASM does not support the additional prefixed integers like, `0b`, `0x`, octal integers and Masm style integers.
- To achieve this, a field `LexHLASMStyleIntegers` (similar to the `LexMasmStyleIntegers` field) is introduced in `MCAsmLexer.h` as well as a corresponding setter.
Note: This field could also go into MCAsmInfo.h. I used the previous precedent set by the `LexMasmIntegers` field.
Depends on https://reviews.llvm.org/D99286
Reviewed By: epastor
Differential Revision: https://reviews.llvm.org/D99374
Currently, for any extern variable, if it doesn't have
section attribution, it will be put into a default ".extern"
btf DataSec. The initial design is to put every extern
variable in a DataSec so libbpf can use it.
But later on, libbpf actually requires extern variables
to put into special sections, e.g., ".kconfig", ".ksyms", etc.
so they can be used properly based on section name.
Andrii mentioned since ".extern" variables are
not actually used, it makes sense to remove it from
the compiler so libbpf does not need to deal with it,
esp. for static linking. The BTF for these extern variables
is still generated.
With this patch, I tested kernel selftests/bpf and all tests
passed. Indeed, removing ".extern" DataSec seems having no
impact.
Differential Revision: https://reviews.llvm.org/D100392
I've run into some cases where a large fraction of compile-time is
spent invalidating SCEV. One of the causes is forgetLoop(), which
walks all values that are def-use reachable from the loop header
phis. When invalidating a topmost loop, that might be close to all
values in a function. Additionally, it's fairly common for there to
not actually be anything to invalidate, but we'll still be performing
this walk again and again.
My first thought was that we don't need to continue walking the uses
if the current value doesn't have a SCEV expression. However, this
isn't quite right, because SCEV construction can skip over values
(e.g. for a chain of adds, we might only create a SCEV expression
for the final value).
What this patch does instead is to only walk the (full) def-use chain
of loop phis that have a SCEV expression. If there's no expression
for a phi, then we also don't have any dependent expressions to
invalidate.
Differential Revision: https://reviews.llvm.org/D100264
We already allow the comparison of the upper bits of 'IsAllOf' (allbits) patterns, but we can safely compare the known zero bits for 'IsAnyOf' (zerobits) patterns as well.
This fixes an issues where we are comparing a type wide than the number of vector elements, which avoids a regression mentioned in rGbaadbe04bf75.
- In the SystemZAsmParser, there will be a few queries to the type of dialect it is (AD_ATT, AD_HLASM) in future patches.
- It would be nice to have two small helper functions `isParsingATT()` and `isParsingHLASM()`
- Putting this as a separate smaller patch allows us to remove its definitions from other dependent patches.
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D99891
For a global weak symbol defined as below:
char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakAnyLinkage,
for which BPF backend generates proper BTF info.
For the above example, if a modifier "const" is added like
const char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakODRLinkage,
for which BPF backend didn't generate any BTF as it
didn't handle WeakODRLinkage.
This patch addes support for WeakODRLinkage and proper
BTF info can be generated for weak symbol defined with
"const" modifier.
Differential Revision: https://reviews.llvm.org/D100362
- Currently, MCAsmInfo provides a CommentString attribute, that various targets can set, so that the AsmLexer can appropriately lex a string as a comment based on the set value of the attribute.
- However, AsmLexer also supports a few additional comment syntaxes, in addition to what's specified as a CommentString attribute. This includes regular C-style block comments (/* ... */), regular C-style line comments (// .... ) and #. While I'm not sure as to why this behaviour exists, I am assuming it does to maintain backward compatibility with GNU AS (see https://sourceware.org/binutils/docs/as/Comments.html#Comments for reference)
For example:
Consider a target which sets the CommentString attribute to '*'.
The following strings are all lexed as comments.
```
"# abc" -> comment
"// abc" -> comment
"/* abc */ -> comment
"* abc" -> comment
```
- In HLASM however, only "*" is accepted as a comment string, and nothing else.
- To achieve this, an additional attribute (`AllowAdditionalComments`) has been added to MCAsmInfo. If this attribute is set to false, then only the string specified by the CommentString attribute is used as a possible comment string to be lexed by the AsmLexer. The regular C-style block comments, line comments and "#" are disabled. As a final note, "#" will still be treated as a comment, if the CommentString attribute is set to "#".
Depends on https://reviews.llvm.org/D99277
Reviewed By: abhina.sreeskantharajan, myiwanch
Differential Revision: https://reviews.llvm.org/D99286
The IR stack protector pass must insert stack checks before the call instead of
between it and the return.
Similarly, SDAG one should recognize that ADJCALLFRAME instructions could be
part of the terminal sequence of a tail call. In this case because such call
frames cannot be nested in LLVM the stack protection code must skip over the
whole sequence (or risk clobbering argument registers).
This patch adds attributes corresponding to
implicits to functions/kernels if
1. it has an indirect call OR
2. it's address is taken.
Once such attributes are set, rest of the codegen would work
out-of-box for indirect calls. This patch eliminates
the potential overhead -fixed-abi imposes even though indirect functions
calls are not used.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D99347
As a side-effect of the change to default HoistCommonInsts to false
early in the pipeline, we fail to convert conditional branch & phis to
selects early on, which prevents vectorization for loops that contain
conditional branches that effectively are selects (or if the loop gets
vectorized, it will get vectorized very inefficiently).
This patch updates SimplifyCFG to perform hoisting if the only
instruction in both BBs is an equal branch. In this case, the only
additional instructions are selects for phis, which should be cheap.
Even though we perform hoisting, the benefits of this kind of hoisting
should by far outweigh the negatives.
For example, the loop in the code below will not get vectorized on
AArch64 with the current default, but will with the patch. This is a
fundamental pattern we should definitely vectorize. Besides that, I
think the select variants should be easier to use for reasoning across
other passes as well.
https://clang.godbolt.org/z/sbjd8Wshx
```
double clamp(double v) {
if (v < 0.0)
return 0.0;
if (v > 6.0)
return 6.0;
return v;
}
void loop(double* X, double *Y) {
for (unsigned i = 0; i < 20000; i++) {
X[i] = clamp(Y[i]);
}
}
```
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100329
This is a work-in-progress implementation of an assembler for M68k.
Outstanding work:
- Updating existing tests assembly syntax
- Writing new tests for the assembler (and disassembler)
I've left those until there's consensus that this approach is okay (I hope that's okay!).
Questions I'm aware of:
- Should this use Motorola or gas syntax? (At the moment it uses Motorola syntax.)
- The disassembler produces a table at runtime for disassembly generated from the code beads. Is this okay? (This is less than ideal but as I mentioned in my llvm-dev post, it's quite complicated to write a table-gen parser for code beads.)
Depends on D98519
Depends on D98532
Depends on D98534
Depends on D98535
Depends on D98536
Differential Revision: https://reviews.llvm.org/D98537
Prep work for adding intrinsics in the future.
Left an assert that the input is constant in ReplaceNodeResults,
as the intrinsic shouldn't go through that path.
We should consider the feeder user number when we do reverse memory
operation transformation. Otherwise, we may get negative impact.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D100166
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Jump threading can replace select then unconditional branch with
conditional branch, but when doing so loses debug info.
This destructive transform is eventually leading to a failed Verifier
run during full LTO builds of the Linux kernel with CFI and KCOV
enabled, as reported in PR39531.
ModuleSanitizerCoveragePass will insert calls to
__sanitizer_cov_trace_pc, and sometimes split critical edges,
using whatever debug info may or may not exist for the branch for
the added libcall. Since we can inline calls to
__sanitizer_cov_trace_pc due to LTO, this can lead to the error
observed in PR39531 when the debug info isn't propagated to
the libcall, because of prior destructive transforms that failed to
retain debug info.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100137
Turning on -fstrict-vtable-pointers in Chrome caused an extra global
initializer. Turns out that a llvm.strip.invariant.group intrinsic was
causing GlobalOpt to fail to step through some simple code.
We can treat *.invariant.group uses as simply their operand.
Value::stripPointerCastsForAliasAnalysis() does exactly this. This
should be safe because the Evaluator does not skip memory accesses due
to invariants or alias analysis.
However, we don't want to leak that we've stripped arbitrary pointer
casts to users of Evaluator, so we bail out if we evaluate a function to
any constant, since we may have looked through *.invariant.group calls
and aliasing pointers cannot be arbitrarily substituted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D98843
Instruction::getDebugLoc can return an invalid DebugLoc. For such cases
where metadata was accidentally removed from the libcall insertion
point, simply insert a DILocation with line 0 scoped to the caller. When
we can inline the libcall, such as during LTO, then we won't fail a
Verifier check that all calls to functions with debug metadata
themselves must have debug metadata.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100158