Currently the freebsd early boot code fails to link. The issue reduces
to 16 bit code at position 0x7000 wanting to jump to position
0x9000. That is represented in the .o file as a relocation with no
symbol and an addend of 0x9000 - 2 (The -2 is because i386 uses the ip
after the current instruction for jumps).
If the addend is interpreted as signed (it should), it is -28674. In a
32 bit architecture, that is the address 0xffff8ffe. To get there from
0x7000 we have to add 4294909950 (too big) or subtract 57346 (too
small). We then produce an error.
What lld is missing is the fact that at runtime this will actually be
a 16 bit architecture and adding 0x1ffe produces 0x8ffe which is the
correct result in 16 bits (-28674).
Since we have a 16 bit addend and a 16 bit PC, the relocation can move
the PC to any 16 bit address and that is the only thing we really need
to check: if the address we are pointing to fits in 16 bits. This is
unfortunately hard to do since we have to delay subtracting the PC and
if we want to do that outside of Target.cpp, we have to move the
overflow check out too. An incomplete patch that tries to do that is
at https://reviews.llvm.org/D34070
This patch instead just relaxes the check. Since the value we have is
the destination minus the PC and the PC is 16 bits, it should fit in
17 bits if the destination fits in 16 too.
bfd had a similar issue for some time and got a similar fix:
https://sourceware.org/ml/binutils/2005-08/msg00001.html
llvm-svn: 305135
SHF_GROUP bit doesn't make sense in executables or DSOs, so linkers are
expected to remove that bit from section flags. We did that when we create
output sections.
This patch is to do that earlier than before. Now the flag is dropped when
we instantiate input section objects.
This change improves ICF. Previously, two sections that differ only in
SHF_GROUP flag were not merged, because when the control reached ICF,
the flag was still there. Now the flag is dropped before reaching to ICF,
so the difference is ignored naturally.
This issue was found by pcc.
Differential Revision: https://reviews.llvm.org/D34074
llvm-svn: 305134
This is used by linux kernel build system.
(https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt "3.2 Built-in object goals")
It has for example next configuration for linking built-in.o files:
drivers-y := $(patsubst %/, %/built-in.o, $(drivers-y))
drivers-$(CONFIG_PCI) += arch/ia64/pci/
...
drivers-$(CONFIG_OPROFILE) += arch/ia64/oprofile/
Im most simple case all CONFIG_* options are off. That means linker is called with empty input archive,
emulation option and no inputs and expected to generate some relocatable output.
ld.bfd is able to do that, we dont.
Patch allows to support this case.
Differential revision: https://reviews.llvm.org/D33937
llvm-svn: 305069
The symbols generated for Thunks have type STT_FUNC, to permit a thunk to
be reused via a blx instruction the Thumb bit (0) needs to be set properly.
Differential Revision: https://reviews.llvm.org/D34036
llvm-svn: 305065
Previously, it couldn't parse
SECTIONS .text (0x1000) : { *(.text) }
because "(" was interpreted as the begining of the "(NOLOAD)" directive.
llvm-svn: 305006
Without this, when building with shared BUILD_SHARED_LIBS=ON
I get errors such as:
lib/Core/Reader.cpp:40: error: undefined reference to
'llvm::identify_magic(llvm::StringRef)'
Differential Revision: https://reviews.llvm.org/D34004
llvm-svn: 304932
This patch reimplements .gdb_index in more natural way,
that makes proccess of switching to multithreaded index building to
be trivial.
Differential revision: https://reviews.llvm.org/D33552
llvm-svn: 304927
Approach significantly simplifies LLD .gdb_index code and makes it much faster.
Also it should resolve issues, like D33176 tries to address once and forever in a clean way.
LLC binary linking without patch and without --gdb-index: 1,599241063
LLC binary linking without patch and with --gdb-index: 6,064316262
LLC binary linking with patch and with --gdb-index: 4,116792104
Time spent for building gdbindex changes from (6,064316262 - 1,599241063 == 4,465075199)
to (4,116792104- 1,599241063 == 2,517551041).
That is 2,517551041/4,465075199 = 0,564 or about 44% speedup.
Differential revision: https://reviews.llvm.org/D33183
llvm-svn: 304895
Thunks are now generated per InputSectionDescription instead of per
OutputSection. This allows created ThunkSections to be inserted directly
into InputSectionDescription.
Changes in this patch:
- Loop over InputSectionDescriptions to find relocations to Thunks
- Generate a ThunkSection per InputSectionDescription
- Remove synchronize() as we no longer need it
- Move fabricateDefaultCommands() before createThunks
Differential Revision: https://reviews.llvm.org/D33835
llvm-svn: 304887
Previously we would merge relocation sections by name.
That did not work in some cases, like testcase shows.
Patch implements logic to merge relocation sections if their target
sections were merged into the same output section.
Differential revision: https://reviews.llvm.org/D33824
llvm-svn: 304886
When linking linux kernel LLD currently reports next errors:
ld: error: unable to evaluate expression: input section .head.text has no output section assigned
ld: error: At least one side of the expression must be absolute
ld: error: At least one side of the expression must be absolute
That does not provide file/line information and overall looks unclear.
Patch adds location information to ExprValue and that allows
to provide more clear error messages.
Differential revision: https://reviews.llvm.org/D33943
llvm-svn: 304881
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
Before this patch in -r we compute the OutputSection sizes early in
the various calls to assignOffsets. With this change we can remove
most of those calls.
llvm-svn: 304860
In preparation for inserting Thunks into InputSectionDescription::Sections
extract the loop that finds InputSections that may have calls that need
Thunks. This isn't much benefit now but this will be useful when we have to
extract the InputSectionDescriptions::Sections from the script.
Differential Revision: https://reviews.llvm.org/D33834
llvm-svn: 304783
In preparation for inserting Thunks into InputSectionDescriptions this
simple change associates added Thunks with a vector of InputSections instead
of an OutputSection. As of now we are just using OutputSection::Sections.
Differential Revision: https://reviews.llvm.org/D33832
llvm-svn: 304782
Previously LLD would fail for case when there are multiple comdats and -r.
That happened because it merged all ".group" (SHT_GROUP) sections into single
output, producing broken result. Such sections may have similar name, alignment and flags
and other properties. We need to produce separate output section for each such input one.
Differential revision: https://reviews.llvm.org/D33643
llvm-svn: 304769
Traditionally, it has been defined in crtbegin.o, which is typically
provided by libgcc or as part of the C library on some systems. However,
but there's no principled reason for it to be there. We optionaly
define this symbol, which can be used on platforms that don't provide
__dso_handle in crtbegin.o or which don't use crtbegin.o at all.
Differential Revision: https://reviews.llvm.org/D33856
llvm-svn: 304732
procedural optimizations to prevent dropping symbols and allow the linker
to process re-directs.
PR33145: --wrap doesn't work with lto.
Differential Revision: https://reviews.llvm.org/D33621
llvm-svn: 304719
This is PR33289.
Previously LLD leaved section naming as is and that lead to wrong result,
because we decompress sections when using -r,
and hence should remove ".z" prefix.
Differential revision: https://reviews.llvm.org/D33885
llvm-svn: 304711
This change alters the sorting for OutputSections with the SHF_LINK_ORDER
flag in OutputSection::finalize() to use the InputSectionDescription
representation and not the OutputSection::Sections representation.
Differential revision: https://reviews.llvm.org/D33772
llvm-svn: 304700
Spec says: (http://www.sco.com/developers/gabi/latest/ch4.sheader.html)
sh_info
This member holds extra information, whose interpretation depends on the section type.
If the sh_flags field for this section header includes the attribute SHF_INFO_LINK,
then this member represents a section header table index.
SHF_INFO_LINK
The sh_info field of this section header holds a section header table index.
Since sh_info for SHT_REL[A] sections should contain the section header index of the
section to which the relocation applies, this is
consistent with spec to put this flag. Behavior matches both bfd and gold as well.
Differential revision: https://reviews.llvm.org/D33763
llvm-svn: 304531
This is probably the correct location for it: next to
fabricateDefaultCommands. If we don't have a linker script, we
fabricate one. If we have one, we patch it.
llvm-svn: 304436
This is PR33243. R_GOTONLY_PC_FROM_END was not in a list of link time constant
expressions and that was a result of confusiing messages like PR shows:
/usr/bin/ld.lld: error: /usr/lib/go/src/runtime/alg.go:47:
can't create dynamic relocation R_386_GOTPC against local symbol in readonly segment defined in /tmp/nice/go-link-597453838/go.o
Though in reality we just should not have try to create a dynamic relocation for this case at all.
Patch fixes the issue.
Differential revision: https://reviews.llvm.org/D33717
llvm-svn: 304393
We were looking up sections by name during expression evaluation. By
keeping track of forward declarations we can do the lookup during
script parsing.
Doing the lookup earlier will be more efficient when assignAddresses
is run twice and removes two uses of OutputSections.
llvm-svn: 304381
Before InputSectionBase had an OutputSection pointer, but that was not
always valid. For example, if it was a merge section one actually had
to look at MergeSec->OutSec.
This was brittle and caused bugs like the one fixed by r304260.
We now have a single Parent pointer that points to an OutputSection
for InputSection, but to a SyntheticSection for merge sections and
.eh_frame. This makes it impossible to accidentally access an invalid
OutSec.
llvm-svn: 304338
We would crash if a SHF_LINK_ORDER section pointed to a non
InputSection section. Since those sections are not merged in order,
SHF_LINK_ORDER is pretty meaningless and we can error on that case.
llvm-svn: 304327
This change converts the writing of the .ARM.exidx sentinel section to use
the InputSectionDescriptions instead of OutputSection::Sections this is in
preparation for the retirement of OutputSection::Sections.
Differential Revision: https://reviews.llvm.org/D33500
llvm-svn: 304289
This happens when attempting to link shared libraries using exceptions on
MIPS. It requires -z notext because clang generates R_MIPS_64 relocations
inside .eh_frame.
The crash happened because for EhInputSection the OutSec member is null.
Patch by Alexander Richardson!
llvm-svn: 304260
When there is a linker script with .ARM.exidx in the SECTIONS
command we must add the .ARM.exidx sentinel section to the
InputSectionDescriptions as well as to OutputSection::Sections.
Differential Revision: https://reviews.llvm.org/D33496
llvm-svn: 304206
I found that during visual inspection of code while wrote different patch.
Script in testcase probably have nothing common with real life, but
we segfault currently using it.
If output section is known NOBITS, there is no need to create
writers threads for doing nothing or proccess any filler logic that
is useless here. We can just early return, that is what this patch do.
DIfferential revision: https://reviews.llvm.org/D33646
llvm-svn: 304192
InputSections may contain MergeInputSection members which trigger
a segmentation fault when trying to cast them to InputSection.
Differential Revision: https://reviews.llvm.org/D33628
llvm-svn: 304189
While the following expression is handled fine:
PROVIDE_HIDDEN(newsym = oldsym + address);
The following expression triggers an error because the expression
is evaluated as absolute:
PROVIDE_HIDDEN(newsym = ALIGN(oldsym, CONSTANT(MAXPAGESIZE)) + address);
To avoid this error, we use late evaluation for ALIGN by making the
alignment an attribute of the expression itself.
Differential Revision: https://reviews.llvm.org/D33629
llvm-svn: 304185
Now that we are trying to use the linker script representation as the
canonycal one, there are a few loops looking for just OutputSectionCommands.
Create a vector with just the OutputSectionCommands once that is
stable to simplify the rest of the code.
llvm-svn: 304181
This is PR33052, "Bug 33052 - -r eats comdats ".
To fix it I stop removing group section from out when -r is given
and fixing SHT_GROUP content when writing it just like we do some
other fixup, e.g. for Rel[a]. (it needs fix for section indices that
are in group).
Differential revision: https://reviews.llvm.org/D33485
llvm-svn: 304140
The .dynamic section of an ELF almost doesn't need to be written to with
the exception of the DT_DEBUG entry. For several reasons having a read
only .dynamic section would be useful. This change adds the -z keyword
"rodynamic" which forces .dynamic to be read-only. In this case DT_DEBUG
will not be emited.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D33251
llvm-svn: 304024
On SPARC, .plt is both writeable and executable. The current way
sections are sorted means that lld puts it after .data/.bss. but it
really needs to be close to .test to make sure branches into .plt
don't overflow. I'd argue that because .bss is supposed to come last
on all architectures, we should change the default sort order such
that writable and executable sections come before sections that are
just writeable. read-only executable sections should still come after
sections that are just read-only of course. This diff makes this
change.
llvm-svn: 304008
I found this when builded llc binary using gcc 5.4.1 + LLD.
gcc produces duplicate entries in .debug_gnu_pubtypes section, ex:
UnifyFunctionExitNodes.cpp.o has:
0x0000ac07 EXTERNAL TYPE "std::success_type<void*>"
0x0000ac07 EXTERNAL TYPE "std::success_type<void*>"
clang produces single entry here:
0x0000d291 EXTERNAL TYPE "std::__success_type<void *>"
If we link output from gcc with LLD, that would produce excessive duplicate
entries in .gdb_index constant pool area. That does not seem affect gdb work,
but makes .gdb_index larger than it can be.
I also checked that gold filters out such duplicates too. Patch fixes it.
Differential revision: https://reviews.llvm.org/D32647
llvm-svn: 303975
https://sourceware.org/gdb/onlinedocs/gdb/Index-Section-Format.html says:
"A CU vector in the constant pool is a sequence of offset_type values.
The first value is the number of CU indices in the vector.
Each subsequent value is the index and symbol attributes of a CU in the CU list."
Previously we keeped 2 values until the end, what was useless.
Initially was a part of D32647, though it is possible to split out.
Patch do that.
Differential revision: https://reviews.llvm.org/D33551
llvm-svn: 303973
In this way, the content and the flag is always consistent, which I
think better than removing the bit when input sections reaches the Writer.
llvm-svn: 303926
It is not clear why a synthetic section wants to use padding defined
in the linker script. The padding is for the space between sections.
It was also missing a test.
llvm-svn: 303812
This is the only place we use threads for ICF. The intention of this code
was to split an input vector into 256 shards and process them in parallel.
What the code was actually doing was to split an input into 257 shards,
process the first 256 shards in parallel, and the remaining one in serial.
That means this code takes ceil(256/n)+1 instead of ceil(256/n) where n
is the number of available CPU cores. The former converges to 2 while
the latter converges to 1.
This patches fixes the above issue.
llvm-svn: 303797
Summary:
This is required on some platforms, as GNU libstdc++ std::call_once is known to be buggy.
This fixes operation of LLD on at least NetBSD and perhaps OpenBSD and Linux PowerPC.
The same change has been introduced to LLVM and LLDB.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: emaste, #lld
Tags: #lld
Differential Revision: https://reviews.llvm.org/D33508
llvm-svn: 303788
A variable `ComdatGroup` is not supposed to contain a large number of
items. Even when linking clang, it ends up having only 300K strings.
It doesn't make sense to use CachedHashStringRef for this hash table.
This patch has neutral or slightly positive impact on performance while
reducing code complexity.
llvm-svn: 303787
This reduces how many times we have to map from OutputSection to
OutputSectionCommand. It is a required step to moving
clearOutputSections earlier.
In order to always use writeTo in OutputSectionCommand we have to call
fabricateDefaultCommands for -r links and move section compression
after it.
llvm-svn: 303784
Once the dummy linker script is created, we want it to be used for
everything to avoid having two redundant representations that can get
out of sync.
We were already clearing OutputSections. With this patch we clear the
Sections vector of every OutputSection.
llvm-svn: 303703
By the time we get to linker scripts, all special InputSectionBase
should have been combined into synthetic sections, which are a type of
InputSection. The net result is that we can use InputSection in a few
places that were using InputSectionBase.
llvm-svn: 303702
If the compiler driver passes --build-id and the user uses -Wl to
pass --build-id= then the user's flag should take precedence.
Differential Revision: https://reviews.llvm.org/D33461
llvm-svn: 303689
This converts the last (chronologically) user of OutputSections to use
the linker script commands instead.
The idea is to convert all uses after fabricateDefaultCommands, so
that we have a single representation.
llvm-svn: 303384
GetSection is a template because write calls relocate.
relocate has two parts. The non alloc code really has to be a
template, as it is looking a raw input file data.
The alloc part is only a template because of getSize.
This patch folds the value of getSize early, detemplates
getRelocTargetVA and splits relocate into a templated non alloc case
and a regular function for the alloc case. This has the nice advantage
of making sure we collect all the information we need for relocations
before getting to InputSection::relocateNonAlloc.
Since we know got is alloc, it can just call the function directly and
avoid the template.
llvm-svn: 303355
This change adds support for the R_ARM_SBREL32 relocation. The relocation
is a base relative relocation that is produced by clang/llvm when -frwpi
is used. The use case for the -frwpi option is position independent data
for embedded systems that do not have a GOT. With -frwpi all data is
accessed via an offset from a base register (usually r9), where r9 is set
at run time to where the data has been loaded. The base of the data is
known as the static base.
The ARM ABI defines the static base as:
B(S) is the addressing origin of the output segment defining the symbol S.
The origin is not required to be the base address of the segment. For
simplicity we choose to use the base address of the segment.
The ARM procedure call standard only defines a read write variant using
R_ARM_SBREL32 relocations. The read-only data is accessed via pc-relative
offsets from the code, this is implemented in clang as -fropi.
Fixes PR32924
Differential Revision: https://reviews.llvm.org/D33280
llvm-svn: 303337
Nothing special here, just detemplates code that became possible
to detemplate after recent commits in a straghtforward way.
Differential revision: https://reviews.llvm.org/D33234
llvm-svn: 303237
SymbolTableBaseSection was introduced.
Detemplation of SymbolTableSection should allow to detemplate more things.
Differential revision: https://reviews.llvm.org/D33124
llvm-svn: 303150
Switch to llvm::to_integer() everywhere in LLD instead of
StringRef::getAsInteger() because API of latter is confusing.
It returns true on error and false otherwise what makes reading
the code incomfortable.
Differential revision: https://reviews.llvm.org/D33187
llvm-svn: 303149
We should only ever expect this function to return a regular
InputSection; I would not expect a function definition to be in a
MergeInputSection or EhInputSection. We were previously crashing
in writeTo if this function returned a section that was not an
InputSection because we do not set OutSec for such sections.
This can happen in practice if a function is defined in an empty
section which shares its offset-in-file with a MergeInputSection,
as in the provided test case.
A better fix for this bug would be to fix the
DWARFUnit::collectAddressRanges() interface to provide section
information (see D33183), but this at least fixes the crash.
Differential Revision: https://reviews.llvm.org/D33176
llvm-svn: 303089
We used to place orphans by just using compareSectionsNonScript.
Then we noticed that since linker scripts can use another order, we
should first try match the section to a given PT_LOAD. But there is
nothing special about PT_LOAD. The same issue can show up for
PT_GNU_RELRO for example.
In general, we have to search for the most similar section and put the
orphan next to it. Most similar being defined as how long they follow
the same code path in compareSecitonsNonScript.
That is what this patch does. We now compute a rank for each output
section, with a bit for each branch in what was
compareSectionsNonScript.
With this findOrphanPos is now fully general and orphan placement can
be optimized by placing every section with the same rank at once.
The included testcase is a variation of many-sections.s that uses
allocatable sections to avoid the fast path in the existing
code. Without threads it goes form 46 seconds to 0.9 seconds.
llvm-svn: 302903
This reverts changes introduced in r302414 "[ELF] - Set DF_STATIC_TLS flag for i386 target."
Because DF_STATIC_TLS does not look to be used by glibc or anything else.
llvm-svn: 302884
Both gold and bfd restrict that one:
ld.bfd: test.o: relocation R_X86_64_TPOFF32 against `var' can not be
used when making a shared object; recompile with -fPIC
ld.gold: error: test.o: unsupported reloc 23 against global symbol var
What looks reasonable because it is 32 bit one. Patch do the same.
Differential revision: https://reviews.llvm.org/D33100
llvm-svn: 302881
Previously we were not printing out the type of the incompatible section
which made it difficult to determine what the problem was.
The error message format has been change to the following:
error: section type mismatch for .shstrtab
>>> <internal>:(.shstrtab): SHT_STRTAB
>>> output section .shstrtab: Unknown
Patch by Alexander Richardson.
Differential Revision: https://reviews.llvm.org/D32488
llvm-svn: 302694
This behavior differs from the semantics implemented by GNU linkers
which only define this symbol iff ELF headers are in the memory
mapped segment.
Differential Revision: https://reviews.llvm.org/D33019
llvm-svn: 302687
This is PR32664.
Issue was revealed by linux kernel script which was:
SECTIONS {
. = (0xffffffff80000000 + ALIGN(0x1000000, 0x200000));
phys_startup_64 = ABSOLUTE(startup_64 - 0xffffffff80000000);
.text : AT(ADDR(.text) - 0xffffffff80000000) {
.....
*(.head.text)
Where startup_64 is in .head.text.
At the place of assignment to phys_startup_64 we can not calculate absolute value for startup_64
because .text section has no VA assigned. Two patches were prepared earlier to address this: D32173 and D32174.
And in comments for D32173 was suggested not try to support this case, but error out.
Differential revision: https://reviews.llvm.org/D32793
llvm-svn: 302668
When compiling LLD using GCC 7 it reports warnings like:
"warning: this statement may fall through [-Wimplicit-fallthrough=]"
LLVM has LLVM_FALLTHROUGH macro which can be used to avoid such warnings.
Together with D33036 this patch fixes them.
Differential revision: https://reviews.llvm.org/D32907
llvm-svn: 302666
Adds support for the ORIGIN and LENGTH linker script built in functions.
ORIGIN(memory) Return the origin of the memory region
LENGTH(memory) Return the length of the memory region
Redo of D29775 for refactored linker script parsing.
Patch by Robert Clarke
Differential Revision: https://reviews.llvm.org/D32934
llvm-svn: 302564
This is a bit easier to read and a lot faster in some cases. A version
of many-sections.s with linker scripts goes from 0m41.232s to
0m19.575s.
llvm-svn: 302528
The code following this one already considers every possible insertion
point for orphan sections, there is no point in sorting them before.
llvm-svn: 302441
This is PR32437.
DF_STATIC_TLS
If set in a shared object or executable, this flag instructs the
dynamic linker to reject attempts to load this file dynamically.
It indicates that the shared object or executable contains code
using a static thread-local storage scheme. Implementations need
not support any form of thread-local storage.
Patch checks if IE/LE relocations were used to check if code uses
static model. If so it sets the DF_STATIC_TLS flag.
Differential revision: https://reviews.llvm.org/D32354
llvm-svn: 302414
Previously it was impossible to use linkerscript with --compress-debug-sections
because of assert failture:
Assertion failed: isFinalized(), file C:\llvm\lib\MC\StringTableBuilder.cpp, line 64
Patch fixes the issue
llvm-svn: 302413
We can set SectionIndex tentatively as we process the linker script
instead of looking it repeatedly.
In general we should try to have as few name lookups as possible.
llvm-svn: 302299
This feels a bit hackish, but I think it is still an improvement.
The way a tls address is computed in the various architectures is not
that different. For example, for local dynamic we need the base of the
tls (R_TLSLD or R_TLSLD_PC), and the offset of that particular symbol
(R_ABS).
Given the similarity, we can just use the expressions instead of
having two additional target hooks.
llvm-svn: 302279
The test ELF/lto/thin-archivecollision.ll was not testing what it
wanted to test. It needs two archive members with the same name, but
different offsets.
Without this we could remove all references of OffsetInArchive and all
tests would still pass.
Fixing the test showed that the --whole-archive case was broken, which
this patch fixes.
llvm-svn: 302241
In the non linker script case we would try very early to find out if
we could allocate the headers. Failing to do that would add extra
alignment to the first ro section, since we would set PageAlign
thinking it was the first section in the PT_LOAD.
In the linker script case the header allocation must be done in the
end, causing some duplication.
We now tentatively add the headers to the first PT_LOAD and if it
turns out they don't fit, remove them. With this we only need to
allocate the headers in one place in the code.
llvm-svn: 302186
We were correctly computing the size contribution of a .tbss input
section (it is none), but we were incorrectly considering the
alignment of the output section: it was advancing Dot instead of
ThreadBssOffset.
As far as I can tell this was always wrong in our linkerscript
implementation, but that became more visible now that the code is
shared with the non linker script case.
llvm-svn: 302107
It seems virtually everyone who tries to do LTO build with Clang and
LLD was hit by a mistake to forget using llvm-ar command to create
archive files. I wasn't an exception. Since this is an annoying common
issue, it is probably better to handle that gracefully rather than
reporting an error and tell the user to redo build with different
configuration.
Differential Revision: https://reviews.llvm.org/D32721
llvm-svn: 302083
It doesn't matter what binding we store in a non-UsedInRegularObj undefined
symbol because we should reset it when we see a real undefined symbol in
a combined LTO object. The fact that we weren't doing so before is a bug
(PR32899) which is now fixed.
llvm-svn: 302067
The --section-start <name>=<address> needs to be translated into equivalent
linker script commands. There are a couple of problems with the existing
implementation:
- The --section-start with the lowest address is assumed to be at the start
of the map. This assumption is incorrect, we have to iterate through the
SectionStartMap to find the lowest address.
- The addresses in --section-start were being over-aligned when the
sections were marked as PageAlign. This is inconsistent with the use of
SectionStartMap in fixHeaders(), and can cause problems when the PageAlign
causes an "unable to move location counter backward" error when the
--section-start with PageAlign is aligned to an address higher than the next
--section-start. The ld.bfd and ld.gold seem to be more consistent with this
approach but this is not a well specified area.
This change fixes the problems above and also corrects a typo in which
fabricateDefaultCommands() is called with the wrong parameter, it should be
called with AllocateHeader not Config->MaxPageSize.
Differential Revision: https://reviews.llvm.org/D32749
llvm-svn: 302007
Strip on OpenBSD does not correctly handle an empty .eh_frame section
and produces broken binaries in that case. Currently lld creates such
an empty .eh_frame section, despite the fact that the OpenBSD crtend.o
explicitly inserts a terminator. The Linux LSB "standard":
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html#EHFRAME
explicitly says that
The .eh_frame section shall contain 1 or more Call Frame Information (CFI) records.
This diff includes a test that specifically tests the issue I'm seeing
on OpenBSD.
Patch by Mark Kettenis!
llvm-svn: 301931
If there is a bug in the LTO implementation that causes it to fail to provide
an expected symbol definition, the linker should report an undefined symbol
error. Unfortunately, we were failing to do so if the symbol definition
was weak, as the undefine() function was turning the definition into a weak
undefined symbol, which resolves to zero if the symbol remains undefined. This
patch causes us to set the binding to STB_GLOBAL when we undefine a symbol.
I can't see a good way to test this. The behaviour should only be observable
if there is a bug in the LTO implementation.
Differential Revision: https://reviews.llvm.org/D32731
llvm-svn: 301897
When using linkerscripts we were trying to sort SHF_LINK_ORDER
sections too early. Instead of always doing two runs of
assignAddresses, record the section order in processCommands.
llvm-svn: 301830
When the -no-keep-memory option is given, BFD linker tries to save
memory in their own way. Since our internal architecture is completely
different from that linker, that option doesn't make sense to us.
llvm-svn: 301772
For an option -foo-bar-baz, we have Config->FooBarBaz. Since -rpath is
-rpath and not -r-path, it should be Config->Rpath instead Config->RPath.
llvm-svn: 301759
This version uses a set to speed up the synchronize method.
Original message:
Remove LinkerScript::flush.
This patch replaces flush with a last ditch attempt at synchronizing
the section list with the linker script "AST".
The synchronization is a bit of a hack and should in time be avoided
by creating the AST earlier so that modifications can be made directly
to it instead of modifying the section list and synchronizing it back.
This is the main step for fixing
https://bugs.llvm.org/show_bug.cgi?id=32816. With this in place I
think the only missing thing would be to have processCommands assign
section indexes as dummy offsets so that the sort in
OutputSection::finalize works.
With this LinkerScript::assignAddresses becomes much simpler, which
should help with the thunk work.
llvm-svn: 301745
Since the output format has been simplified, the class to print
out a map file doesn't seem to be needed anymore. We can replace
it with a few non-member functions.
llvm-svn: 301715
This patch is to ignore .debug_gnu_pub{names,types} sections if the
-gdb-index option was given.
Differential Revision: https://reviews.llvm.org/D32662
llvm-svn: 301710
This reverts commit r301678 since that change significantly slowed
down the linker. Before this patch, LLD could link clang in 8 seconds,
but with this patch it took 40 seconds.
llvm-svn: 301709
This change was motivated by output from lld-link.exe and link.exe
getting intermixed. There's already a flush() call in message(), so
there's precedence.
llvm-svn: 301693
Previously, we printed out input sections and input files in
separate columns as shown below.
Address Size Align Out In File Symbol
0000000000201000 0000000000000015 4 .text
0000000000201000 000000000000000e 4 .text
0000000000201000 000000000000000e 4 foo.o
0000000000201000 0000000000000000 0 _start
0000000000201005 0000000000000000 0 f(int)
000000000020100e 0000000000000000 0 local
0000000000201010 0000000000000002 4 bar.o
0000000000201010 0000000000000000 0 foo
0000000000201011 0000000000000000 0 bar
This format doesn't make much sense because for each input section,
there's always exactly one input file. This patch changes the format
to this.
Address Size Align Out In Symbol
0000000000201000 0000000000000015 4 .text
0000000000201000 000000000000000e 4 foo.o:(.text)
0000000000201000 0000000000000000 0 _start
0000000000201005 0000000000000000 0 f(int)
000000000020100e 0000000000000000 0 local
0000000000201010 0000000000000002 4 bar.o:(.text)
0000000000201010 0000000000000000 0 foo
0000000000201011 0000000000000000 0 bar
Differential Revision: https://reviews.llvm.org/D32657
llvm-svn: 301683
This patch replaces flush with a last ditch attempt at synchronizing
the section list with the linker script "AST".
The synchronization is a bit of a hack and should in time be avoided
by creating the AST earlier so that modifications can be made directly
to it instead of modifying the section list and synchronizing it back.
This is the main step for fixing
https://bugs.llvm.org/show_bug.cgi?id=32816. With this in place I
think the only missing thing would be to have processCommands assign
section indexes as dummy offsets so that the sort in
OutputSection::finalize works.
With this LinkerScript::assignAddresses becomes much simpler, which
should help with the thunk work.
llvm-svn: 301678
We found that some part of code for the -Map option takes O(m*n)
where m is the number of input sections in some file and n is
the number of symbols in the same file. If you do LTO, we usually
have only a few object files as inputs for the -Map option
feature, so this performance characteristic was worse than I
expected.
This patch rewrites the -Map option feature to speed it up.
I eliminated the O(m*n) bottleneck and also used multi-threading.
As a result, clang link time with the -Map option improved from
18.7 seconds to 11.2 seconds. Without -Map, it takes 7.7 seconds,
so the -Map option is now about 3x faster than before for this
test case (from 11.0 seconds to 3.5 seconds.) The generated output
file size was 223 MiB, and the file contains 1.2M lines.
Differential Revision: https://reviews.llvm.org/D32631
llvm-svn: 301659
This patch is to reduce amount of template uses. The new code is less
exciting and boring than before, but I think it is easier to read.
Differential Revision: https://reviews.llvm.org/D32467
llvm-svn: 301488
We were already pretty close, the one exception was when a name was
reused in another SECTIONS directive:
SECTIONS {
.text : { *(.text) }
.data : { *(.data) }
}
SECTIONS {
.data : { *(other) }
}
In this case we would create a single .data and magically output
"other" while looking at the first OutputSectionCommand.
We now create two .data sections. This matches what gold does. If we
really want to create a single one, we should change the parser so that
the above is parsed as if the user had written
SECTIONS {
.text : { *(.text) }
.data : { *(.data) *(other)}
}
That is, there should be only one OutputSectionCommand for .data and
it would have two InputSectionDescriptions.
By itself this patch makes the code a bit more complicated, but is an
important step in allowing assignAddresses to operate just on the
linker script.
llvm-svn: 301484
isFileWritable() checked if a file is writable and then emitted
an error message if it is not writable. So it did more than the
name says. This patch moves error() calls to Driver.
llvm-svn: 301422
This code was not used because of
handleARMTlsRelocation and handleMipsTlsRelocation methods that are called
for these platforms instead of regular TLS code.
Differential revision: https://reviews.llvm.org/D32355
llvm-svn: 301414
gnu ld description of option is:
--defsym=symbol=expression
Create a global symbol in the output file, containing the absolute address given
by expression. You may use this option as many times as necessary to define multiple
symbols in the command line. A limited form of arithmetic is supported for the
expression in this context: you may give a hexadecimal constant or the name of an
existing symbol, or use "+" and "-" to add or subtract hexadecimal constants or
symbols. If you need more elaborate expressions, consider using the linker command
language from a script. Note: there should be no white space between symbol,
the equals sign ("="), and expression.
In compare with D32082, this patch does not support math expressions and absolute
symbols. It implemented via code similar to --wrap. That covers 1 of 3 possible
--defsym cases.
Differential revision: https://reviews.llvm.org/D32171
llvm-svn: 301391
Previously we were not printing out the flags of the incompatible
section which made it difficult to determine what the problem was.
The error message format has been change to the following:
error: incompatible section flags for .bar
>>> /foo/bar/incompatible-section-flags.s.tmp.o:(.bar): 0x403
>>> output section .bar: 0x3
Patch by Alexander Richardson.
Differential Revision: https://reviews.llvm.org/D32484
llvm-svn: 301319
addIgnored defines a given symbol even if there is no existing
symbol with the same name. So, even if libc provides __tls_get_addr,
we should still be able to call addIgnored.
Differential Revision: https://reviews.llvm.org/D32053
llvm-svn: 301290
BSD's __progname symbol is defined in crt1.o and linked against main
executables. The libc expects that main executables export __progname
symbol via .dynsym sections. In order to handle this case, we scan
undefined symbols in DSOs and exported them by setting Sym->ExportDynamic
to true.
But it turned out that setting that variable is not enough to make sure
that symbols are exported in all use cases. If a -dynamic-list option is
given, all symbols not explicitly mentioned in a version script are
hidden by default. That hides __progname symbol. This patch fixes the issue.
Fixes https://bugs.llvm.org/show_bug.cgi?id=32703
llvm-svn: 301282
We can just use the existing SoName member variable. It now initially
contains what was in DefaultSoName and is modified if the .so has an
actual soname.
llvm-svn: 301259
This relocation type has an implicit addend. Account for it when
processing the relocation. Add an offset to an existing test to ensure
it gets processed correctly.
Fixes PR32634.
Differential Revision: https://reviews.llvm.org/D32336
llvm-svn: 301207
This change fabricates linker script commands for the case where there is
no linker script SECTIONS to control address assignment. This permits us
to have a single Script->assignAddresses() function.
There is a small change in user-visible-behavior with respect to the
handling of .tbss SHT_NOBITS, SHF_TLS as the Script->assignAddresses()
requires setDot() to be called with monotically increasing addresses.
The tls-offset.s test has been updated so that the script and non-script
results match.
This change should make the non-script behavior of lld closer to an
equivalent linker script.
Differential Revision: https://reviews.llvm.org/D31888
llvm-svn: 300687
createHeader didn't use data members of Elf_Chdr type and write
directly to a given buffer. That is not a good practice because
the function had a knowledge of the struct layout.
llvm-svn: 300674
Patch implements --compress-debug-sections=zlib.
In compare with D20211 (a year old patch, abandoned), it implementation
uses streaming and fully reimplemented, does not support zlib-gnu for
simplification.
This is PR32308.
Differential revision: https://reviews.llvm.org/D31941
llvm-svn: 300444
Imagine next script:
SECTIONS { BYTE(0x11); }
Section content written to disk will be 0x11. Previous LLD behavior was to make this
section SHT_NOBITS. What is not correct because section has content.
ld.bfd makes such sections SHT_PROGBITS, this patch do the same.
This fixes PR32537
Differential revision: https://reviews.llvm.org/D32016
llvm-svn: 300317
This fixes an assertion `Align != 0u && "Align can't be 0."'
in llvm::alignTo() when a linker script references a globally
defined variable in an ALIGN() context.
Patch by Alexander Richardson !
Differential revision: https://reviews.llvm.org/D31984
llvm-svn: 300315
Start using it in LLD to avoid needing to read bitcode again just to get the
target triple, and in llvm-lto2 to avoid printing symbol table information
that is inappropriate for the target.
Differential Revision: https://reviews.llvm.org/D32038
llvm-svn: 300300
We generally want to use uint64_t instead of uintX_t if the 64-bit
type works for both 32-bit and 64-bit because it is simpler than
the variable-size type.
llvm-svn: 300293
"read" is used as a prefix for functions that read tokens from input
streams. This function doesn't really read anything, but just parses
a given string as an integer, so rename.
llvm-svn: 300281
Replace addModuleReloc with AddTlsReloc so that we can use it for both the
module relocation and the offset relocation.
Differential Revision: https://reviews.llvm.org/D31751
llvm-svn: 300192
ARM Exception Index Table sections .ARM.exidx have an implicit dependency
on code sections via SHF_LINK_ORDER. When code sections are folded by ICF
we must mark the unique .ARM.exidx table that describes it as not live
to prevent an illegal entry in the exception table.
Note that we do not try and follow the relocations from the .ARM.exidx
section to the .ARM.extab sections to mark these as not live. Leaving
these sections is not a correctness problem. In theory these could be
removed via an application of garbage collection.
Fixes https://bugs.llvm.org/show_bug.cgi?id=32614
Differential Revision: https://reviews.llvm.org/D31932
llvm-svn: 300182
RELRO is a feature to make segments read-only after dynamic relocations
are applied. It is different from read-only segments because RELRO is
initially writable. And of course RELRO is different from writable
segments.
RELRO is not a very well known feature. We have a series of checks to
make a decision whether a section should be in a RELRO segment or not,
but we didn't describe why. This patch adds comments to explain how
that decision is made.
llvm-svn: 300176
Previously, we allowed only integers in this context. Now you can
write expressions there. LLD is now able to handle the following
linker, for example.
MEMORY { rom (rx) : ORIGIN = (1024 * 1024) }
llvm-svn: 300131
Fixes PR32572.
When
(a) a library has no soname
and (b) library is given on the command line with path (and not through -L/-l flags)
DT_NEEDED entry for such library keeps the path as given.
This behavior is consistent with gold and bfd, and is used in compiler-rt test suite.
This is a second attempt after r300007 got reverted. This time relro-omagic test is
changed in a way to avoid hardcoding the path to the test directory in the objdump'd
binary.
llvm-svn: 300011
Fixes PR32572.
When
(a) a library has no soname
and (b) library is given on the command line with path (and not through -L/-l flags)
DT_NEEDED entry for such library keeps the path as given.
This behavior is consistent with gold and bfd, and is used in compiler-rt test suite.
llvm-svn: 300007
Previously we silently produced broken output for R_386_GOT32X/R_386_GOT32
relocations if they were used to compute the address of the symbol’s global
offset table entry without base register when position-independent code is disabled.
Situation happened because of recent ABI changes. Released ABI mentions that
R_386_GOT32X can be calculated in a two different ways (so we did not follow ABI here
before this patch), but draft ABI also mentions R_386_GOT32 relocation here.
We should use the same calculations for both relocations.
Problem is that we always calculated them as G + A - GOT (offset from end of GOT),
but for case when PIC is disabled, according to i386 ABI calculation should be G + A,
what should produce just an address in GOT finally.
ABI: https://github.com/hjl-tools/x86-psABI/wiki/intel386-psABI-draft.pdf (p36, p60).
llvm-svn: 299812
Both functions always use the same GOT sections In<ELFT>::Got and
In<ELFT>::MipsGot respectively, so we do not need to pass them as an
argument.
llvm-svn: 299773
When the target of the TlsOffsetRel is non-preemptible we can write the
offset directly into the GOT without needing a dynamic relocation. This
is optional for dynamically linked executables but is required for static
linking.
This change adds the relocation to the GOT entry and a test case for
non-0 offsets so that if we miss out the offset the test won't spuriously
pass by virtue of the default value being 0.
Differential Revision: https://reviews.llvm.org/D31749
llvm-svn: 299751
The handleNoRelaxTlsRelocation handled both ARM and Mips as at a
high-level the actions of what to do when encountering a local dynamic or
global dynamic TLS relocation are the same. However due to Mips using a
custom GOT the differences of the implementation are enough that the
function became difficult to understand.
This change replaces handleNotRelaxTlsRelocation into
handleARMTlsRelocation() and handleMipsTlsRelocation() so that the ARM and
Mips specific code is isolated.
Differential Revision: https://reviews.llvm.org/D31748
llvm-svn: 299750