regions.
Added more complex analysis for number of teams and number of threads in
the target regions, also merged related common code between CGOpenMPRuntime
and CGOpenMPRuntimeNVPTX classes.
llvm-svn: 358126
If the pointer is captured by reference, it must be mapped as
_PTR_AND_OBJ kind of mapping to correctly translate the pointer address
on the device.
llvm-svn: 357488
For the global variables the allocate directive must specify only the
predefined allocator. This allocator must be translated into the correct
form of the address space for the targets that support different address
spaces.
llvm-svn: 356702
Added initial codegen for the local variables with the #pragma omp
allocate directive. Instead of allocating the variables on the stack,
__kmpc_alloc|__kmpc_free functions are used for memory (de-)allocation.
llvm-svn: 356472
array.
If the firstprivate variable is a reference, we may incorrectly classify
the kind of the private copy. Use the type of the private copy instead
of the original shared variable.
llvm-svn: 356098
If the variable was declared and marked as declare target, a new offload
entry with size 0 is created. But if later a definition is created and
marked as declare target, this definition is not added to the entry set
and the definition remains not mapped to the target. Patch fixes this
problem allowing to redefine the size and linkage for
previously registered declaration.
llvm-svn: 355960
memory.
If the variable with the constant non-scalar type is firstprivatized in
the target region, the local copy is created with the data copying.
Instead, we allocate the copy in the constant memory and avoid extra
copying in the outlined target regions. This global copy is used in the
target regions without loss of the performance.
llvm-svn: 355418
The various EltSize, Offset, DataLayout, and StructLayout arguments
are all computable from the Address's element type and the DataLayout
which the CGBuilder already has access to.
After having previously asserted that the computed values are the same
as those passed in, now remove the redundant arguments from
CGBuilder's Create*GEP functions.
Differential Revision: https://reviews.llvm.org/D57767
llvm-svn: 353629
Some of these functions take some extraneous arguments, e.g. EltSize,
Offset, which are computable from the Type and DataLayout.
Add some asserts to ensure that the computed values are consistent
with the passed-in values, in preparation for eliminating the
extraneous arguments. This also asserts that the Type is an Array for
the calls named "Array" and a Struct for the calls named "Struct".
Then, correct a couple of errors:
1. Using CreateStructGEP on an array type. (this causes the majority
of the test differences, as struct GEPs are created with i32
indices, while array GEPs are created with i64 indices)
2. Passing the wrong Offset to CreateStructGEP in TargetInfo.cpp on
x86-64 NACL (which uses 32-bit pointers).
Differential Revision: https://reviews.llvm.org/D57766
llvm-svn: 353529
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
Summary: this commit adds support to a new dependence type introduced in OpenMP
5.0. The LLVM OpenMP RTL already supports this feature, so we only need to
modify CLANG to take advantage of them.
Differential Revision: https://reviews.llvm.org/D57576
llvm-svn: 353018
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
This fixes most references to the paths:
llvm.org/svn/
llvm.org/git/
llvm.org/viewvc/
github.com/llvm-mirror/
github.com/llvm-project/
reviews.llvm.org/diffusion/
to instead point to https://github.com/llvm/llvm-project.
This is *not* a trivial substitution, because additionally, all the
checkout instructions had to be migrated to instruct users on how to
use the monorepo layout, setting LLVM_ENABLE_PROJECTS instead of
checking out various projects into various subdirectories.
I've attempted to not change any scripts here, only documentation. The
scripts will have to be addressed separately.
Additionally, I've deleted one document which appeared to be outdated
and unneeded:
lldb/docs/building-with-debug-llvm.txt
Differential Revision: https://reviews.llvm.org/D57330
llvm-svn: 352514
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
With commit r351627, LLVM gained the ability to apply (existing) IPO
optimizations on indirections through callbacks, or transitive calls.
The general idea is that we use an abstraction to hide the middle man
and represent the callback call in the context of the initial caller.
It is described in more detail in the commit message of the LLVM patch
r351627, the llvm::AbstractCallSite class description, and the
language reference section on callback-metadata.
This commit enables clang to emit !callback metadata that is
understood by LLVM. It does so in three different cases:
1) For known broker functions declarations that are directly
generated, e.g., __kmpc_fork_call for the OpenMP pragma parallel.
2) For known broker functions that are identified by their name and
source location through the builtin detection, e.g.,
pthread_create from the POSIX thread API.
3) For user annotated functions that carry the "callback(callee, ...)"
attribute. The attribute has to include the name, or index, of
the callback callee and how the passed arguments can be
identified (as many as the callback callee has). See the callback
attribute documentation for detailed information.
Differential Revision: https://reviews.llvm.org/D55483
llvm-svn: 351629
Each we create the target regions with the teams distribute inner
region, we can better estimate number of the teams required to execute
the target region. Function __kmpc_push_target_tripcount() is used for
purpose, which accepts device_id and the number of the iterations,
performed by the associated loop.
llvm-svn: 350571
All of the other constructors already take a reference to the AST context.
This avoids calling Decl::getASTContext in most cases. Additionally move
the definition of the constructor from Expr.h to Expr.cpp since it is calling
DeclRefExpr::computeDependence. NFC.
llvm-svn: 349901
A map clause with the close map-type-modifier is a hint to
prefer that the variables are mapped using a copy into faster
memory.
Patch by Ahsan Saghir (saghir)
Differential Revision: https://reviews.llvm.org/D55719
llvm-svn: 349551
__kmpc_barrier runtime functions must be marked as convergent to prevent
some dangerous optimizations. Also, for NVPTX target all barriers must
be emitted as simple barriers.
llvm-svn: 348271
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
For the NVPTX target default locations should be emitted as constants +
additional info must be emitted in the reserved_2 field of the ident_t
structure. The 1st bit controls the execution mode and the 2nd bit
controls use of the lightweight runtime. The combination of the bits for
Non-SPMD mode + lightweight runtime represents special undefined mode,
used outside of the target regions for orphaned directives or functions.
Should allow and additional optimization inside of the target regions.
llvm-svn: 347425
The base pointer for the lambda mapping must point to the lambda capture
placement and pointer must point to the captured variable itself. Patch
fixes this problem.
llvm-svn: 346408
Fixed lookup for the target regions in unused virtual functions + fixed
processing of the global variables not marked as declare target but
emitted during debug info emission.
llvm-svn: 346343
The previously used combination `PTR_AND_OBJ | PRIVATE` could be used for mapping of some data in Fortran. Changed it to `PTR_AND_OBJ | LITERAL`.
llvm-svn: 345982
Added support for mapping of lambdas in the target regions. It scans all
the captures by reference in the lambda, implicitly maps those variables
in the target region and then later reinstate the addresses of
references in lambda to the correct addresses of the captured|privatized
variables.
llvm-svn: 345609
Summary: This patch adds a new code generation path for bound sharing directives containing distribute parallel for. The new code generation scheme applies to chunked schedules on distribute and parallel for directives. The scheme simplifies the code that is being generated by eliminating the need for an outer for loop over chunks for both distribute and parallel for directives. In the case of distribute it applies to any sized chunk while in the parallel for case it only applies when chunk size is 1.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D53448
llvm-svn: 345509
Summary:
For the following code:
```
int i;
#pragma omp taskloop
for (i = 0; i < 100; ++i)
{}
#pragma omp taskloop nogroup
for (i = 0; i < 100; ++i)
{}
```
Clang emits the following LLVM IR:
```
...
call void @__kmpc_taskgroup(%struct.ident_t* @0, i32 %0)
%2 = call i8* @__kmpc_omp_task_alloc(%struct.ident_t* @0, i32 %0, i32 1, i64 80, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %struct.kmp_task_t_with_privates*)* @.omp_task_entry. to i32 (i32, i8*)*))
...
call void @__kmpc_taskloop(%struct.ident_t* @0, i32 %0, i8* %2, i32 1, i64* %8, i64* %9, i64 %13, i32 0, i32 0, i64 0, i8* null)
call void @__kmpc_end_taskgroup(%struct.ident_t* @0, i32 %0)
...
%15 = call i8* @__kmpc_omp_task_alloc(%struct.ident_t* @0, i32 %0, i32 1, i64 80, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %struct.kmp_task_t_with_privates.1*)* @.omp_task_entry..2 to i32 (i32, i8*)*))
...
call void @__kmpc_taskloop(%struct.ident_t* @0, i32 %0, i8* %15, i32 1, i64* %21, i64* %22, i64 %26, i32 0, i32 0, i64 0, i8* null)
```
The first set of instructions corresponds to the first taskloop construct. It is important to note that the implicit taskgroup region associated with the taskloop construct has been materialized in our IR: the `__kmpc_taskloop` occurs inside a taskgroup region. Note also that this taskgroup region does not exist in our second taskloop because we are using the `nogroup` clause.
The issue here is the 4th argument of the kmpc_taskloop call, starting from the end, is always a zero. Checking the LLVM OpenMP RT implementation, we see that this argument corresponds to the nogroup parameter:
```
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
int sched, kmp_uint64 grainsize, void *task_dup);
```
So basically we always tell to the RT to do another taskgroup region. For the first taskloop, this means that we create two taskgroup regions. For the second example, it means that despite the fact we had a nogroup clause we are going to have a taskgroup region, so we unnecessary wait until all descendant tasks have been executed.
Reviewers: ABataev
Reviewed By: ABataev
Subscribers: rogfer01, cfe-commits
Differential Revision: https://reviews.llvm.org/D53636
llvm-svn: 345180
Fixed emission of the __kmpc_global_thread_num() so that it is not
messed up with alloca instructions anymore. Plus, fixes emission of the
__kmpc_global_thread_num() functions in the target outlined regions so
that they are not called before runtime is initialized.
llvm-svn: 343856
Add support for OMP5.0 requires directive and unified_address clause.
Patches to follow will include support for additional clauses.
Differential Revision: https://reviews.llvm.org/D52359
llvm-svn: 343063
Comparison functions used in sorting algorithms need to have strict weak
ordering. Remove the assert and allow comparisons on all lists.
llvm-svn: 342774
declare reduction.
If the declare reduction construct with the non-dependent type is
defined in the template construct, the compiler might crash on the
template instantition. Reworked the whole instantiation scheme for the
declare reduction constructs to fix this problem correctly.
llvm-svn: 342151
Currently ident_t objects are created const when debug info is not
enabled, but the libittnotify libray in the OpenMP runtime writes to
the reserved_2 field (See __kmp_itt_region_forking in
openmp/runtime/src/kmp_itt.inl). Now create ident_t objects non-const.
Differential Revision: https://reviews.llvm.org/D51331
llvm-svn: 340934
The compiler may produce unexpected error messages/crashes when declare
target variables were used. Patch fixes problems with the declarations
marked as declare target to or link.
llvm-svn: 339805
declare target.
According to OpenMP 5.0, variables captured in lambdas in declare target
regions must be considered as implicitly declare target.
llvm-svn: 339152
Encoding offload target triples onto comdat group key for offload initialization
code guarantees that it will be executed once per each unique combination of
offload targets.
Differential Revision: https://reviews.llvm.org/D50218
llvm-svn: 338916
offload targets.
Changed the linkage of omp_offloading.img_start.<triple> and omp_offloading.img_end.<triple> symbols from external to external weak to allow dropping of some targets during linking.
llvm-svn: 338413
No need to change the linkage, we can avoid the problem using special variable. That points to the original variable and, thus, prevent some of the optimizations that might break the compilation.
llvm-svn: 338399
The first argument for the parallel outlined functions, called as
serialized parallel regions, should be a pointer to the global thread id
that always is 0.
llvm-svn: 337957
device IDs are now 64-bit integers (as opposed to 32-bit)
map flags are 64-bit long (used to be 32-bit)
mappings for partially mapped structs are now calculated at compile time and members of partially mapped structs are flagged using the MEMBER_OF field
Support for is_device_ptr on struct members was dropped - this functionality is not supported by the OpenMP standard and its implementation is technically infeasible (however, use_device_ptr on struct members works as a non-standard extension of the compiler)
llvm-svn: 337468
If the declare target link entries are created but not used, the
compiler will produce an error message. Patch improves handling of such
situations + improves checks for possibly lost declare target variables.
llvm-svn: 337207
We track when we see a name-shaped expression followed by a '<' token
and parse the '<' as a comparison. Then:
* if we see a token sequence that cannot possibly be an expression but
can be a template argument (in particular, a type-id) that follows
either a ',' or the '<', diagnose that the '<' was supposed to start
a template argument list, and
* if we see '>()', diagnose that the '<' was supposed to start a
template argument list.
This only changes the diagnostic for error cases, and in practice
appears to catch the most common cases where a missing 'template'
keyword leads to parse errors within a template.
Differential Revision: https://reviews.llvm.org/D48571
llvm-svn: 335687
It is required to emit unique names for offloading regions ids. Required
to support compilation and linking of several compilation units.
llvm-svn: 331899
If the global variables are marked as declare target and they need
ctors/dtors, these ctors/dtors are emitted and then invoked by the
offloading runtime library. They are not explicitly used in the emitted
code and thus can be optimized out. Patch marks these functions as used,
so the optimizer cannot remove these function during the optimization
phase.
llvm-svn: 331879
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
The linkage of the global entries must be weak to enable support of
redefinition of the same target regions in multiple compilation units.
llvm-svn: 331768
Added initial codegen for level 2, 3 etc. parallelism. Currently, all
the second, the third etc. parallel regions will run sequentially.
llvm-svn: 331642
Some symbols are not allowed to be used as names on some targets. Patch
ries to unify the emission of the names of LLVM globals so they could be
used on different targets.
llvm-svn: 331358
devices.
If the function is an instantiation|specialization of the template and
is used in the device code, the definitions of such functions should be
emitted for the device.
llvm-svn: 331261
Emit error messages instead of compiler crashing when the target region
does not exist in the device code + fix crash when the location comes
from macros.
llvm-svn: 331195
Global variables marked as declare target are allowed to be used in map
clauses. Patch fixes the crash of the compiler on the declare target
variables in map clauses.
llvm-svn: 330156
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
the tail padding is not reused.
We track on the AggValueSlot (and through a couple of other
initialization actions) whether we're dealing with an object that might
share its tail padding with some other object, so that we can avoid
emitting stores into the tail padding if that's the case. We still
widen stores into tail padding when we can do so.
Differential Revision: https://reviews.llvm.org/D45306
llvm-svn: 329342
variables.
Added emission of the offloading data sections for the variables within
declare target regions + fixes emission of the declare target variables
marked as declare target not within the declare target region.
llvm-svn: 328888
When the declare target variables are emitted for the device,
constructors|destructors for these variables must emitted and registered
by the runtime in the offloading sections.
llvm-svn: 328705
If the link clause is used on the declare target directive, the object
should be linked on target or target data directives, not during the
codegen. Patch adds support for this clause.
llvm-svn: 328544
Added initial codegen for device side of declarations inside `omp
declare target` construct + codegen for implicit `declare target`
functions, which are used in the target regions.
llvm-svn: 327636
If initialization of the task reductions requires pointer to original
variable, which is stored in the threadprivate storage, we used the
address of this pointer instead.
llvm-svn: 327136
variables.
If the task has reduction construct and this construct for some variable
requires unique threadprivate storage, we may generate different names
for variables used in taskgroup task_reduction clause and in task
in_reduction clause. Patch fixes this problem.
llvm-svn: 326827
Patch fixes the problem with the functions marked as `declare simd`. If
the canonical declaration does not have associated `declare simd`
construct, we may not generate required code even if other
redeclarations are marked as `declare simd`.
llvm-svn: 326594
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
Summary:
This patch enables debugging of C99 VLA types by generating more precise
LLVM Debug metadata, using the extended DISubrange 'count' field that
takes a DIVariable.
This should implement:
Bug 30553: Debug info generated for arrays is not what GDB expects (not as good as GCC's)
https://bugs.llvm.org/show_bug.cgi?id=30553
Reviewers: echristo, aprantl, dexonsmith, clayborg, pcc, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: jholewinski, schweitz, davide, fhahn, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D41698
llvm-svn: 323952