Commit Graph

42 Commits

Author SHA1 Message Date
Stephen Neuendorffer d7cbef2714 [MLIR] Fixes for shared library dependencies.
Summary:

This patch is a step towards enabling BUILD_SHARED_LIBS=on, which
builds most libraries as DLLs instead of statically linked libraries.
The main effect of this is that incremental build times are greatly
reduced, since usually only one library need be relinked in response
to isolated code changes.

The bulk of this patch is fixing incorrect usage of cmake, where library
dependencies are listed under add_dependencies rather than under
target_link_libraries or under the LINK_LIBS tag.  Correct usage should be
like this:

add_dependencies(MLIRfoo MLIRfooIncGen)
target_link_libraries(MLIRfoo MLIRlib1 MLIRlib2)

A separate issue is that in cmake, dependencies between static libraries
are automatically included in dependencies.  In the above example, if MLIBlib1
depends on MLIRlib2, then it is sufficient to have only MLIRlib1 in the
target_link_libraries.  When compiling with shared libraries, it is necessary
to have both MLIRlib1 and MLIRlib2 specified if MLIRfoo uses symbols from both.

Reviewers: mravishankar, antiagainst, nicolasvasilache, vchuravy, inouehrs, mehdi_amini, jdoerfert

Reviewed By: nicolasvasilache, mehdi_amini

Subscribers: Joonsoo, merge_guards_bot, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73653
2020-02-04 08:56:37 -08:00
Lei Zhang df71000d7d [mlir][spirv] Convert linalg.generic for reduction to SPIR-V ops
This commit adds a pattern to lower linalg.generic for reduction
to spv.GroupNonUniform* ops. Right now this only supports integer
reduction on 1-D input memref. Shader entry point ABI is queried
to make sure that the input memref's shape matches the local
workgroup's invocation configuration. This makes sure that the
workload fits in one local workgroup so that we can leverage
SPIR-V group non-uniform operations.

linglg.generic is a structured op that preserves the right level
of information. It is easier to recognize reduction at this level
than performing analysis on loops.

This commit also exposes `getElementPtr` in SPIRVLowering.h given
that it's a generally useful utility function.

Differential Revision: https://reviews.llvm.org/D73437
2020-01-31 09:37:04 -05:00
David Truby 63c8972562 [MLIR] Add OpenMP dialect with barrier operation
Summary:
Barrier is a simple operation that takes no arguments and returns
nothing, but implies a side effect (synchronization of all threads)

Reviewers: jdoerfert

Subscribers: mgorny, guansong, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72400
2020-01-29 11:34:58 +00:00
Nicolas Vasilache 89b395fe79 [mlir][EDSC] Refactor dependencies involving EDSCs.
Summary: This diff removes the dependency of LinalgOps and VectorOps on EDSCs.

Reviewers: jpienaar, ftynse

Reviewed By: ftynse

Subscribers: merge_guards_bot, mgorny, mehdi_amini, rriddle, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72481
2020-01-15 09:34:29 -05:00
Lei Zhang b30d87a90b [mlir][spirv] Add basic definitions for supporting availability
SPIR-V has a few mechanisms to control op availability: version,
extension, and capabilities. These mechanisms are considered as
different availability classes.

This commit introduces basic definitions for modelling SPIR-V
availability classes. Specifically, an `Availability` class is
added to SPIRVBase.td, along with two subclasses: MinVersion
and MaxVersion for versioning. SPV_Op is extended to take a
list of `Availability`. Each `Availability` instance carries
information for generating op interfaces for the corresponding
availability class and also the concrete availability
requirements.

With the availability spec on ops, we can now auto-generate the
op interfaces of all SPIR-V availability classes and also
synthesize the op's implementations of these interfaces. The
interface generation is done via new TableGen backends
-gen-avail-interface-{decls|defs}. The op's implementation is
done via -gen-spirv-avail-impls.

Differential Revision: https://reviews.llvm.org/D71930
2019-12-27 16:25:09 -05:00
Nicolas Vasilache 5c0c51a997 Refactor dependencies to expose Vector transformations as patterns - NFC
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.

This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.

PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00
Nicolas Vasilache 6755543af5 Move Linalg Transforms that are actually Conversions - NFC
PiperOrigin-RevId: 281844602
2019-11-21 15:41:32 -08:00
Nicolas Vasilache fa14d4f6ab Implement unrolling of vector ops to finer-grained vector ops as a pattern.
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.

This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.

PiperOrigin-RevId: 281555100
2019-11-20 11:49:36 -08:00
Eric Schweitz 88368a19aa Add some CMake rules for installing headers, mlir-tblgen, and mlir-opt
Closes tensorflow/mlir#246

PiperOrigin-RevId: 281442685
2019-11-19 21:05:16 -08:00
Mahesh Ravishankar a78bd84cf8 NFC: Refactor Dialect Conversion targeting SPIR-V.
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
   dialect.
2) Add header files that expose functions to add patterns for the
   dialects to SPIR-V lowering, as well as a pass that does the
   dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
2019-11-14 12:34:54 -08:00
Alex Zinenko 971b8dd4d8 Move Affine to Standard conversion to lib/Conversion
This is essentially a dialect conversion and conceptually belongs to
conversions.

PiperOrigin-RevId: 280460034
2019-11-14 10:35:21 -08:00
Denis Khalikov d21ba951de [spirv] Add a pass to decorate the composite types with layout info.
Add a pass to decorate the composite types used by
composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant storage classes with layout information.

Closes tensorflow/mlir#156

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/156 from denis0x0D:sandbox/layout_info_decoration 7c50840fd38ca169a2da7ce9886b52b50c868b84
PiperOrigin-RevId: 273634140
2019-10-08 16:54:11 -07:00
River Riddle ac91e67375 Add support for walking the uses of a symbol.
MLIR uses symbol references to model references to many global entities, such as functions/variables/etc. Before this change, there is no way to actually reason about the uses of such entities. This change provides a walker for symbol references(via SymbolTable::walkSymbolUses), as well as 'use_empty' support(via SymbolTable::symbol_use_empty). It also resolves some deficiencies in the LangRef definition of SymbolRefAttr, namely the restrictions on where a SymbolRefAttr can be stored, ArrayAttr and DictionaryAttr, and the relationship with operations containing the SymbolTable trait.

PiperOrigin-RevId: 273549331
2019-10-08 10:21:59 -07:00
Alex Zinenko e0d78eac23 NFC: rename Conversion/ControlFlowToCFG to Conversion/LoopToStandard
This makes the name of the conversion pass more consistent with the naming
scheme, since it actually converts from the Loop dialect to the Standard
dialect rather than working with arbitrary control flow operations.

PiperOrigin-RevId: 272612112
2019-10-03 01:35:03 -07:00
Deven Desai e81b3129b4 [ROCm] Adding pass to lower GPU Dialect to ROCDL Dialect.
This is a follow-up to the PRtensorflow/mlir#146 which introduced the ROCDL Dialect. This PR introduces a pass to lower GPU Dialect to the ROCDL Dialect. As with the previous PR, this one builds on the work done by @whchung, and addresses most of the review comments in the original PR.

Closes tensorflow/mlir#154

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/154 from deven-amd:deven-lower-gpu-to-rocdl 809893e08236da5ab6a38e3459692fa04247773d
PiperOrigin-RevId: 272390729
2019-10-02 01:50:30 -07:00
Deven Desai fee40fef5c [ROCm] Adding ROCDL Dialect.
This commit introduces the ROCDL Dialect (i.e. the ROCDL ops + the code to lower those ROCDL ops to LLWM intrinsics/functions). Think of ROCDL Dialect as analogous to the NVVM Dialect, but for AMD GPUs. This patch contains just the essentials needed to get a simple example up and running. We expect to make further additions to the ROCDL Dialect.

This is the first of 3 commits, the follow-up will be:
 * add a pass that lowers GPU Dialect to ROCDL Dialect
 * add a "mlir-rocm-runner" utility

Closes tensorflow/mlir#146

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/146 from deven-amd:deven-rocdl-dialect e78e8005c75a78912631116c78dc844fcc4b0de9
PiperOrigin-RevId: 271511259
2019-09-27 00:22:32 -07:00
River Riddle 120509a6b2 Refactor PassTiming to support nested pipelines.
This is done via a new set of instrumentation hooks runBeforePipeline/runAfterPipeline, that signal the lifetime of a pass pipeline on a specific operation type. These hooks also provide the parent thread of the pipeline, allowing for accurate merging of timers running on different threads.

PiperOrigin-RevId: 267909193
2019-09-08 19:58:13 -07:00
Nicolas Vasilache 252ada4932 Add lowering of vector dialect to LLVM dialect.
This CL is step 3/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.

This CL adds support for converting MLIR n-D vector types to (n-1)-D arrays of 1-D LLVM vectors and a conversion VectorToLLVM that lowers the `vector.extractelement` and `vector.outerproduct` instructions to the proper mix of `llvm.vectorshuffle`, `llvm.extractelement` and `llvm.mulf`.

This has been independently verified to produce proper avx2 code.

Input:
```
func @vec_1d(%arg0: vector<4xf32>, %arg1: vector<8xf32>) -> vector<8xf32> {
  %2 = vector.outerproduct %arg0, %arg1 : vector<4xf32>, vector<8xf32>
  %3 = vector.extractelement %2[0 : i32]: vector<4x8xf32>
  return %3 : vector<8xf32>
}
```

Command:
```
mlir-opt vector-to-llvm.mlir -vector-lower-to-llvm-dialect --disable-pass-threading | mlir-opt -lower-to-cfg -lower-to-llvm | mlir-translate --mlir-to-llvmir | opt -O3 | llc -O3 -march=x86-64 -mcpu=haswell -mattr=fma,avx2
```

Output:
```
vec_1d:                                 # @vec_1d
# %bb.0:
        vbroadcastss    %xmm0, %ymm0
        vmulps  %ymm1, %ymm0, %ymm0
        retq
```
PiperOrigin-RevId: 262895929
2019-08-12 04:08:57 -07:00
Mahesh Ravishankar 32f78fe3f2 Link in MLIRGPUtoSPIRVTransforms with mlir-opt
Add a missed library that needs to be linked with mlir-opt. This
results in a test failure in the MLIR due to the pass
`-convert-gpu-to-spirv` not being found.

PiperOrigin-RevId: 260773067
2019-07-30 12:39:43 -07:00
Nicolas Vasilache cca53e8527 Extract std.for std.if and std.terminator in their own dialect
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.

PiperOrigin-RevId: 258123853
2019-07-16 13:43:18 -07:00
Nicolas Vasilache cab671d166 Lower affine control flow to std control flow to LLVM dialect
This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM

The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.

LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.

PiperOrigin-RevId: 257794436
2019-07-12 08:44:28 -07:00
Alex Zinenko 80e2871087 Extend AffineToGPU to support Linalg loops
Extend the utility that converts affine loop nests to support other types of
loops by abstracting away common behavior through templates.  This also
slightly simplifies the existing Affine to GPU conversion by always passing in
the loop step as an additional kernel argument even though it is a known
constant.  If it is used, it will be propagated into the loop body by the
existing canonicalization pattern and can be further constant-folded, otherwise
it will be dropped by canonicalization.

This prepares for the common loop abstraction that will be used for converting
to GPU kernels, which is conceptually close to Linalg loops, while maintaining
the existing conversion operational.

PiperOrigin-RevId: 257172216
2019-07-09 05:26:50 -07:00
Lei Zhang 7b17f4e647 [spirv] Move conversion passes to a new library
PiperOrigin-RevId: 255648303
2019-06-28 12:32:02 -07:00
Stephan Herhut c72c6c3907 Make GPU to CUDA transformations independent of CUDA runtime.
The actual transformation from PTX source to a CUDA binary is now factored out,
enabling compiling and testing the transformations independently of a CUDA
runtime.

MLIR has still to be built with NVPTX target support for the conversions to be
built and tested.

PiperOrigin-RevId: 255167139
2019-06-26 05:16:37 -07:00
Nicolas Vasilache dac75ae5ff Split test-specific passes out of mlir-opt
Instead put their impl in test/lib and link them into mlir-test-opt

PiperOrigin-RevId: 254837439
2019-06-24 17:47:12 -07:00
Jacques Pienaar 05c110adf3 Remove leftover change from splitting mlir-opt change.
PiperOrigin-RevId: 254767366
2019-06-24 13:45:53 -07:00
Jacques Pienaar 257a654b72 Split out mlir-opt main into separate file.
Enable reusing the real mlir-opt main from unit tests and in case where
additional initialization needs to happen before main is invoked (e.g., when
using different command line flag libraries).

PiperOrigin-RevId: 254764575
2019-06-24 13:45:39 -07:00
Stephan Herhut a14eeacf2c Add lowering pass from GPU dialect operations to LLVM/NVVM intrinsics.
PiperOrigin-RevId: 253551452
2019-06-19 23:03:30 -07:00
Alex Zinenko ebea5767fb Start moving conversions to {lib,include/mlir}/Conversion
Conversions from dialect A to dialect B depend on both A and B.  Therefore, it
is reasonable for them to live in a separate library that depends on both
DialectA and DialectB library, and does not forces dependees of DialectA or
DialectB to also link in the conversion.  Create the directory layout for the
conversions and move the Standard to LLVM dialect conversion as the first
example.

PiperOrigin-RevId: 253312252
2019-06-19 23:02:50 -07:00
Alex Zinenko ee6f84aebd Convert a nest affine loops to a GPU kernel
This converts entire loops into threads/blocks.  No check on the size of the
block or grid, or on the validity of parallelization is performed, it is under
the responsibility of the caller to strip-mine the loops and to perform the
dependence analysis before calling the conversion.

PiperOrigin-RevId: 253189268
2019-06-19 23:02:02 -07:00
Jacques Pienaar c59538977e Add keywords in target_link_libraries post add_llvm_executable.
--

PiperOrigin-RevId: 250704528
2019-06-01 20:10:42 -07:00
River Riddle 11e485ca19 Replace usages of 'add_executable' with 'add_llvm_executable'.
--

PiperOrigin-RevId: 250691487
2019-06-01 20:10:32 -07:00
Lei Zhang fba1d50b85 [spirv] Start the SPIR-V dialect
This CL sets up the basic structure for a SPIR-V dialect: operation
    definition specification, dialect registration, testing, etc.
    A single op, FMul, is defined and tested to showcase.

    The SPIR-V dialect aims to be a simple proxy for the SPIR-V binary format
    to enable straightforward and lightweight conversion from/to the binary
    format. Ops in this dialect should stay as the same semantic level and
    try to be a mechanical mapping to the corresponding SPIR-V instructions;
    but they can deviate representationally to allow using MLIR mechanisms.

--

PiperOrigin-RevId: 250040830
2019-06-01 20:03:33 -07:00
Stella Laurenzo 5065839da7 Upstream the Quantizer tool (part 4).
This adds the basic passes needed and ties them into mlir-opt. Also adds two specific unit tests that exercise them.

    Next step is a standalone quantizer tool and additional cleanup.
    Tested:
      ninja check-mlir

--

PiperOrigin-RevId: 249167690
2019-06-01 19:53:12 -07:00
Stella Laurenzo d4dcf7de9e Move Quantization -> Dialect/QuantOps, FxpMathOps -> Dialect/FxpMathOps.
Adding the additional layer of directory was discussed offline and matches the Target/ tree. The names match the defacto convention we seem to be following where the C++ namespace is ^(.+)Ops/$ matched against the directory name.

    This is in preparation for patching the Quantizer into this tree, which would have been confusing without moving the Quantization dialect to its more proper home. It is left to others to move other dialects if desired.

    Tested:
      ninja check-mlir

--

PiperOrigin-RevId: 248171982
2019-05-20 13:41:55 -07:00
Jacques Pienaar 9fd1957852 Fix opt build failure.
--

PiperOrigin-RevId: 245844236
2019-05-06 08:21:25 -07:00
Jacques Pienaar 3ea13d2db0 Fixup MLIRGPU to mlir-opt in cmake.
--

PiperOrigin-RevId: 245820077
2019-05-06 08:21:09 -07:00
Nicolas Vasilache 56c7a957bf Parsing support for Range, View and Slice operations
This CL implements the previously unsupported parsing for Range, View and Slice operations.
    A pass is introduced to lower to the LLVM.
    Tests are moved out of C++ land and into mlir/test/Examples.
    This allows better fitting within standard developer workflows.

--

PiperOrigin-RevId: 245796600
2019-05-06 08:20:55 -07:00
Nicolas Vasilache 8370cc7492 Start a Linalg dialect
This CL starts implementing a Linalg dialect with the objective of supporting
    optimizing compilation of loops and library calls for a subset of common linear
    algebra operations.

    This CL starts by simply adding a linalg.range type and an operation with the
    proper roundtripping test.

--

PiperOrigin-RevId: 244189468
2019-04-18 11:50:27 -07:00
Stella Laurenzo 7ce55ff7c2 Add CMakeLists.txt for Quantization and FxpMathOps dialects (and misc fixes to build with OSS setup).
Tested:
      cmake -G Ninja ../llvm/ -DLLVM_BUILD_EXAMPLES=ON
      ninja check-mlir

--

PiperOrigin-RevId: 241841296
2019-04-03 19:22:05 -07:00
Mehdi Amini b3a407fa68 Fix MacOS build
This is making up for some differences in standard library and linker flags.
    It also get rid of the requirement to build with RTTI.

--

PiperOrigin-RevId: 241348845
2019-04-01 11:00:30 -07:00
Jacques Pienaar 1273af232c Add build files and update README.
* Add initial version of build files;
    * Update README with instructions to download and build MLIR from github;

--

PiperOrigin-RevId: 241102092
2019-03-30 11:23:22 -07:00