This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Generalize broadcastable trait to variadic operands. Update the
documentation that still talked about element type as part of
broadcastable trait (that bug was already fixed). Also rename
Broadcastable to ResultBroadcastableShape to be more explicit that the
trait affects the result shape (it is possible for op to allow
broadcastable operands but not have result shape that is broadcast
compatible with operands).
Doing some intermediate work to have getBroadcastedType take an optional
elementType as input and use that if specified, instead of the common
element type of type1 and type2 in this function.
Differential Revision: https://reviews.llvm.org/D72559
Summary:
This diff adds support to allow `linalg.generic` and
`linalg.indexed_generic` to take tensor input and output
arguments.
The subset of output tensor operand types must appear
verbatim in the result types after an arrow. The parser,
printer and verifier are extended to accomodate this
behavior.
The Linalg operations now support variadic ranked tensor
return values. This extension exhibited issues with the
current handling of NativeCall in RewriterGen.cpp. As a
consequence, an explicit cast to `SmallVector<Value, 4>`
is added in the proper place to support the new behavior
(better suggestions are welcome).
Relevant cleanups and name uniformization are applied.
Relevant invalid and roundtrip test are added.
Reviewers: mehdi_amini, rriddle, jpienaar, antiagainst, ftynse
Subscribers: burmako, shauheen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72022
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.
This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.
PiperOrigin-RevId: 283355919
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.
PiperOrigin-RevId: 283339992
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.
This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.
PiperOrigin-RevId: 282467075
Thus far DRR always invokes the separate-parameter builder (i.e., requiring
a separate parameter for each result-type/operand/attribute) for creating
ops, no matter whether we can auto-generate a builder with type-deduction
ability or not.
This CL changes the path for ops that we can auto-generate type-deduction
builders, i.e., with SameOperandsAndResultType/FirstAttrDerivedResultType
traits. Now they are going through a aggregate-parameter builder (i.e.,
requiring one parameter for all result-types/operands/attributes).
attributes.)
It is expected this approach will be more friendly for future shape inference
function autogen and calling those autogen'd shape inference function without
excessive packing and repacking operand/attribute lists.
Also, it would enable better support for creating ops with optional attributes
because we are not required to provide an Attribute() as placeholder for
an optional attribute anymore.
PiperOrigin-RevId: 280654800
Previously DRR assumes attributes to appear after operands. This was the
previous requirements on ODS, but that has changed some time ago. Fix
DRR to also support interleaved operands and attributes.
PiperOrigin-RevId: 275983485
Otherwise, we'll see the following warning when compiling with GCC 8:
warning: this ?for? clause does not guard... [-Wmisleading-indentation]
PiperOrigin-RevId: 275735925
NativeCodeCall is handled differently than normal op creation in RewriterGen
(because its flexibility). It will only be materialized to output stream if
it is used. But when using it for auxiliary patterns, we still want the side
effect even if it is not replacing matched root op's results.
PiperOrigin-RevId: 275265467
It's usually hard to understand what went wrong if mlir-tblgen
crashes on some input. This CL adds a few useful LLVM_DEBUG
statements so that we can use mlir-tblegn -debug to figure
out the culprit for a crash.
PiperOrigin-RevId: 275253532
This CL extends declarative rewrite rules to support matching and
generating ops with variadic operands/results. For this, the
generated `matchAndRewrite()` method for each pattern now are
changed to
* Use "range" types for the local variables used to store captured
values (`operand_range` for operands, `ArrayRef<Value *>` for
values, *Op for results). This allows us to have a unified way
of handling both single values and value ranges.
* Create local variables for each operand for op creation. If the
operand is variadic, then a `SmallVector<Value*>` will be created
to collect all values for that operand; otherwise a `Value*` will
be created.
* Use a collective result type builder. All result types are
specified via a single parameter to the builder.
We can use one result pattern to replace multiple results of the
matched root op. When that happens, it will require specifying
types for multiple results. Add a new collective-type builder.
PiperOrigin-RevId: 264588559
In declarative rewrite rules, a symbol can be bound to op arguments or
results in the source pattern, and it can be bound to op results in the
result pattern. This means given a symbol in the pattern, it can stands
for different things: op operand, op attribute, single op result,
op result pack. We need a better way to model this complexity so that
we can handle according to the specific kind a symbol corresponds to.
Created SymbolInfo class for maintaining the information regarding a
symbol. Also created a companion SymbolInfoMap class for a map of
such symbols, providing insertion and querying depending on use cases.
PiperOrigin-RevId: 262675515
Previously we are emitting separate match() and rewrite()
methods, which requires conveying a match state struct
in a unique_ptr across these two methods. Changing to
emit matchAndRewrite() simplifies the picture.
PiperOrigin-RevId: 261906804
This allows for proper forward declaration, as opposed to leaking the internal implementation via a using directive. This also allows for all pattern building to go through 'insert' methods on the OwningRewritePatternList, replacing uses of 'push_back' and 'RewriteListBuilder'.
PiperOrigin-RevId: 261816316
verifyUnusedValue is a bit strange given that it is specified in a
result pattern but used to generate match statements. Now we are
able to support multi-result ops better, we can retire it and replace
it with a HasNoUseOf constraint. This reduces the number of mechanisms.
PiperOrigin-RevId: 261166863
We allow to generate more ops than what are needed for replacing
the matched root op. Only the last N static values generated are
used as replacement; the others serve as auxiliary ops/values for
building the replacement.
With the introduction of multi-result op support, an op, if used
as a whole, may be used to replace multiple static values of
the matched root op. We need to consider this when calculating
the result range an generated op is to replace.
For example, we can have the following pattern:
```tblgen
def : Pattern<(ThreeResultOp ...),
[(OneResultOp ...), (OneResultOp ...), (OneResultOp ...)]>;
// Two op to replace all three results
def : Pattern<(ThreeResultOp ...),
[(TwoResultOp ...), (OneResultOp ...)]>;
// One op to replace all three results
def : Pat<(ThreeResultOp ...), (ThreeResultOp ...)>;
def : Pattern<(ThreeResultOp ...),
[(AuxiliaryOp ...), (ThreeResultOp ...)]>;
```
PiperOrigin-RevId: 261017235
RewriterGen was emitting invalid C++ code if the pattern required to create a
zero-result operation due to the absence of a special case that would avoid
generating a spurious comma. Handle this case. Also add rewriter tests for
zero-argument operations.
PiperOrigin-RevId: 260576998
It's quite common that we want to put further constraints on the matched
multi-result op's specific results. This CL enables referencing symbols
bound to source op with the `__N` syntax.
PiperOrigin-RevId: 260122401
This CL introduces a new syntax for creating multi-result ops and access their
results in result patterns. Specifically, if a multi-result op is unbound or
bound to a name without a trailing `__N` suffix, it will act as a value pack
and expand to all its values. If a multi-result op is bound to a symbol with
`__N` suffix, only the N-th result will be extracted and used.
PiperOrigin-RevId: 256465208
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
Support for ops with variadic operands/results will come later; but right now
a proper message helps to avoid deciphering confusing error messages later in
the compilation stage.
PiperOrigin-RevId: 254071820
This does tracks the location by recording all the ops in the source pattern and using the fused location for the transformed op. Track the locations via the rewrite state which is a bit heavy weight, in follow up to change to matchAndRewrite this will be addressed (and need for extra array go away).
--
PiperOrigin-RevId: 249986555
Certain ops can have multiple variadic operands/results, e.g., `tf.DynamicStitch`.
Even if an op has only one variadic operand/result, it is not necessarily the
very last one, e.g., `tf.RaggedGather`. This CL enhances TableGen subsystem to be
able to represent such cases.
In order to deduce the operand/result value range for each variadic operand,
currently we only support variadic operands/results all of the same size.
So two new traits, `SameVariadicOperandSize` and `SameVariadicResultSize` are
introduced.
--
PiperOrigin-RevId: 245310628
An op can have multiple results. Being explicit that we are binding to the
whole op instead of one of the results. A way to bind to a specific result
is yet to come.
--
PiperOrigin-RevId: 244741137
Both cOp and tAttr were used to perform some native C++ code expression.
Unifying them simplifies the concepts and reduces cognitive burden.
--
PiperOrigin-RevId: 244731946