clients to decide whether to look inside bundled instructions and whether
the query should return true if any / all bundled instructions have the
queried property.
llvm-svn: 146168
We must not issue a bitcast operation for integer-promotion of vector types, because the
location of the values in the vector may be different.
llvm-svn: 146150
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
This flag is used when bundling machine instructions. It indicates
whether the operand reads a value defined inside or outside its bundle.
llvm-svn: 145997
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
llvm-svn: 145975
The new register allocator is much more able to split back up ranges too constrained by register classes.
Fixes <rdar://problem/10466609>
llvm-svn: 145899
This was actually a bit of a mess. TLI.setPrefLoopAlignment was clearly
documented as taking log2(bytes) units, but the x86 target would still
set a preferred loop alignment of '16'.
CodePlacementOpt passed this number on to the basic block, and
AsmPrinter interpreted it as bytes.
Now both MachineFunction and MachineBasicBlock use logarithmic
alignments.
Obviously, MachineConstantPool still measures alignments in bytes, so we
can emulate the thrill of using as.
llvm-svn: 145889
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
non_lazy_symbol_pointers section (__IMPORT,__pointers). Ignore the 'hidden' part
since that will place it in the wrong section.
<rdar://problem/10443720>
llvm-svn: 145356
Conservatively returns zero when the GV does not specify an alignment nor is it
initialized. Previously it returns ABI alignment for type of the GV. However, if
the type is a "packed" type, then the under-specified alignments is attached to
the load / store instructions. In that case, the alignment of the type cannot be
trusted.
rdar://10464621
llvm-svn: 145300
than ABI alignment. These are loads / stores from / to "packed" data structures.
Their alignments are intentionally under-specified.
rdar://10301431
llvm-svn: 145273
fallthrough) in cases where we might fail to rotate an exit to an outer
loop onto the end of the loop chain.
Having *some* rotation, but not performing this rotation, is the primary
fix of thep performance regression with -enable-block-placement for
Olden/em3d (a whopping 30% regression). Still working on reducing the
test case that actually exercises this and the new rotation strategy out
of this code, but I want to check if this regresses other test cases
first as that may indicate it isn't the correct fix.
llvm-svn: 145195
was centered around the premise of laying out a loop in a chain, and
then rotating that chain. This is good for preserving contiguous layout,
but bad for actually making sane rotations. In order to keep it safe,
I had to essentially make it impossible to rotate deeply nested loops.
The information needed to correctly reason about a deeply nested loop is
actually available -- *before* we layout the loop. We know the inner
loops are already fused into chains, etc. We lose information the moment
we actually lay out the loop.
The solution was the other alternative for this algorithm I discussed
with Benjamin and some others: rather than rotating the loop
after-the-fact, try to pick a profitable starting block for the loop's
layout, and then use our existing layout logic. I was worried about the
complexity of this "pick" step, but it turns out such complexity is
needed to handle all the important cases I keep teasing out of benchmarks.
This is, I'm afraid, a bit of a work-in-progress. It is still
misbehaving on some likely important cases I'm investigating in Olden.
It also isn't really tested. I'm going to try to craft some interesting
nested-loop test cases, but it's likely to be extremely time consuming
and I don't want to go there until I'm sure I'm testing the correct
behavior. Sadly I can't come up with a way of getting simple, fine
grained test cases for this logic. We need complex loop structures to
even trigger much of it.
llvm-svn: 145183
heavily on AnalyzeBranch. That routine doesn't behave as we want given
that rotation occurs mid-way through re-ordering the function. Instead
merely check that there are not unanalyzable branching constructs
present, and then reason about the CFG via successor lists. This
actually simplifies my mental model for all of this as well.
The concrete result is that we now will rotate more loop chains. I've
added a test case from Olden highlighting the effect. There is still
a bit more to do here though in order to regain all of the performance
in Olden.
llvm-svn: 145179
pass. This is designed to achieve one of the important optimizations
that the old code placement pass did, but more simply.
This is a somewhat rough and *very* conservative version of the
transform. We could get a lot fancier here if there are profitable cases
to do so. In particular, this only looks for a single pattern, it
insists that the loop backedge being rotated away is the last backedge
in the chain, and it doesn't provide any means of doing better in-loop
placement due to the rotation. However, it appears that it will handle
the important loops I am finding in the LLVM test suite.
llvm-svn: 145158
need lots of fanciness around retaining a reference to a Chain's slot in
the BlockToChain map, but that's all gone now. We can just go directly
to allocating the new chain (which will update the mapping for us) and
using it.
Somewhat gross mechanically generated test case replicates the issue
Duncan spotted when actually testing this out.
llvm-svn: 145120
conflicts, we should only be adding the first block of the chain to the
list, lest we try to merge into the middle of that chain. Most of the
places we were doing this we already happened to be looking at the first
block, but there is no reason to assume that, and in some cases it was
clearly wrong.
I've added a couple of tests here. One already worked, but I like having
an explicit test for it. The other is reduced from a test case Duncan
reduced for me and used to crash. Now it is handled correctly.
llvm-svn: 145119
further. This invariant just wasn't going to work in the face of
unanalyzable branches; we need to be resillient to the phenomenon of
chains poking into a loop and poking out of a loop. In fact, we already
were, we just needed to not assert on it.
This was found during a bootstrap with block placement turned on.
llvm-svn: 145100
successors, they just are all landing pad successors. We handle this the
same way as no successors. Comments attached for the next person to wade
through here and another lovely test case courtesy of Benjamin Kramer's
bugpoint reduction.
llvm-svn: 145098
This was a bug in keeping track of the available domains when merging
domain values.
The wrong domain mask caused ExecutionDepsFix to try to move VANDPSYrr
to the integer domain which is only available in AVX2.
Also add an assertion to catch future attempts at emitting AVX2
instructions.
llvm-svn: 145096
reversed in the function's original ordering, and we happened to
encounter it while handling an outer unnatural CFG structure.
Thanks to the test case reduced from GCC's source by Benjamin Kramer.
This may also fix a crasher in gzip that Duncan reduced for me, but
I haven't yet gotten to testing that one.
llvm-svn: 145094
updateTerminator code didn't correctly handle EH terminators in one very
specific case. AnalyzeBranch would find no terminator instruction, and
so the fallback in updateTerminator is to assume fallthrough. This is
correct, but the destination of the fallthrough was assumed to be the
first successor.
This is *almost always* true, but in certain cases the loop
transformations will cause the landing pad to be the first successor!
Instead of this brittle logic, actually look through the successors for
a non-landing-pad accessor, and to assert if more than one is found.
This will hopefully fix some (if not all) of the self host miscompiles
with block placement. Thanks to Benjamin Kramer for reporting, Nick
Lewycky for an initial stab at a reduction, and Duncan for endless
advice on EH (which I know nothing about) as well as reviewing the
actual fix.
llvm-svn: 145062
dropping weights on the floor for invokes. This was impeding my writing
further test cases for invoke when interacting with probabilities and
block placement.
No test case as there doesn't appear to be a way to test this stuff. =/
Suggestions for a test case of course welcome. I hope to be able to add
test cases that indirectly cover this eventually by adding probabilities
to the exceptional edge and reordering blocks as a result.
llvm-svn: 145060
properly account for the *global* probability of the edge being taken.
This manifested as a very large number of unconditional branches to
blocks being merged against the CFG even though they weren't
particularly hot within the CFG.
The fix is to check whether the edge being merged is both locally hot
relative to other successors for the source block, and globally hot
compared to other (unmerged) predecessors of the destination block.
This introduces a new crasher on GCC single-source, but it's currently
behind a flag, and Ben has offered to work on the reduction. =]
llvm-svn: 145010
formation phase and into the initial walk of the basic blocks. We
essentially pre-merge all blocks where unanalyzable fallthrough exists,
as we won't be able to update the terminators effectively after any
reorderings. This is quite a bit more principled as there may be CFGs
where the second half of the unanalyzable pair has some analyzable
predecessor that gets placed first. Then it may get placed next,
implicitly breaking the unanalyzable branch even though we never even
looked at the part that isn't analyzable. I've included a test case that
triggers this (thanks Benjamin yet again!), and I'm hoping to synthesize
some more general ones as I dig into related issues.
Also, to make this new scheme work we have to be able to handle branches
into the middle of a chain, so add this check. We always fallback on the
incoming ordering.
Finally, this starts to really underscore a known limitation of the
current implementation -- we don't consider broken predecessors when
merging successors. This can caused major missed opportunities, and is
something I'm planning on looking at next (modulo more bug reports).
llvm-svn: 144994
ADDs. MaxOffs is used as a threshold to limit the size of the offset. Tradeoffs
being: (1) If we can't materialize the large constant then we'll cause fast-isel
to bail. (2) Too large of an offset can't be directly encoded in the ADD
resulting in a MOV+ADD. Generally not a bad thing because otherwise we would
have had ADD+ADD, but on Thumb this turns into a MOVS+MOVT+ADD. Working on a fix
for that. (3) Conversely, too low of a threshold we'll miss opportunities to
coalesce ADDs.
rdar://10412592
llvm-svn: 144886
for a single miss and not all predecessor instructions that get selected by
the selection DAG instruction selector. This is still not exact (e.g., over
states misses when folded/dead instructions are present), but it is a step in
the right direction.
llvm-svn: 144832
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
There may be many invokes that share one landing pad, and the previous code
would record the landing pad once for each invoke. Besides the wasted
effort, a pair of volatile loads gets inserted every time the landing pad is
processed. The rest of the code can get optimized away when a landing pad
is processed repeatedly, but the volatile loads remain, resulting in code like:
LBB35_18:
Ltmp483:
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r2, [r7, #-72]
ldr r2, [r7, #-68]
ldr r4, [r7, #-72]
ldr r2, [r7, #-68]
llvm-svn: 144787
This same basic code was in the older version of the SjLj exception handling,
but it was removed in the recent revisions to that code. It needs to be there.
llvm-svn: 144782
%arrayidx135 = getelementptr inbounds [4 x [4 x [4 x [4 x i32]]]]* %M0, i32 0, i64 0
%arrayidx136 = getelementptr inbounds [4 x [4 x [4 x i32]]]* %arrayidx135, i32 0, i64 %idxprom134
Prior to this commit, the GEP instruction that defines %arrayidx136 thought that
%arrayidx135 was a trivial kill. The GEP that defines %arrayidx135 doesn't
generate any code and thus %M0 gets folded into the second GEP. Thus, we need
to look through GEPs with all zero indices.
rdar://10443319
llvm-svn: 144730
has a reference to it. Unfortunately, that doesn't work for codegen passes
since we don't get notified of MBB's being deleted (the original BB stays).
Use that fact to our advantage and after printing a function, check if
any of the IL BBs corresponds to a symbol that was not printed. This fixes
pr11202.
llvm-svn: 144674
block sequence when recovering from unanalyzable control flow
constructs, *always* use the function sequence. I'm not sure why I ever
went down the path of trying to use the loop sequence, it is
fundamentally not the correct sequence to use. We're trying to preserve
the incoming layout in the cases of unreasonable control flow, and that
is only encoded at the function level. We already have a filter to
select *exactly* the sub-set of blocks within the function that we're
trying to form into a chain.
The resulting code layout is also significantly better because of this.
In several places we were ending up with completely unreasonable control
flow constructs due to the ordering chosen by the loop structure for its
internal storage. This change removes a completely wasteful vector of
basic blocks, saving memory allocation in the common case even though it
costs us CPU in the fairly rare case of unnatural loops. Finally, it
fixes the latest crasher reduced out of GCC's single source. Thanks
again to Benjamin Kramer for the reduction, my bugpoint skills failed at
it.
llvm-svn: 144627
Two new TargetInstrInfo hooks lets the target tell ExecutionDepsFix
about instructions with partial register updates causing false unwanted
dependencies.
The ExecutionDepsFix pass will break the false dependencies if the
updated register was written in the previoius N instructions.
The small loop added to sse-domains.ll runs twice as fast with
dependency-breaking instructions inserted.
llvm-svn: 144602
Keep track of the last instruction to define each register individually
instead of per DomainValue. This lets us track more accurately when a
register was last written.
Also track register ages across basic blocks. When entering a new
basic block, use the least stale predecessor def as a worst case
estimate for register age.
The register age is used to arbitrate between conflicting domains. The
most recently defined register wins.
llvm-svn: 144601
"kill". This looks like a bug upstream. Since that's going to take some time
to understand, loosen the assertion and disable the optimization when
multiple kills are seen.
llvm-svn: 144568
instructions of the two-address operands) in order to avoid inserting copies.
This fixes the few regressions introduced when the two-address hack was
disabled (without regressing the improvements).
rdar://10422688
llvm-svn: 144559
cleans up all the chains allocated during the processing of each
function so that for very large inputs we don't just grow memory usage
without bound.
llvm-svn: 144533
tests when I forcibly enabled block placement.
It is apparantly possible for an unanalyzable block to fallthrough to
a non-loop block. I don't actually beleive this is correct, I believe
that 'canFallThrough' is returning true needlessly for the code
construct, and I've left a bit of a FIXME on the verification code to
try to track down why this is coming up.
Anyways, removing the assert doesn't degrade the correctness of the algorithm.
llvm-svn: 144532
this pass. We're leaving already merged blocks on the worklist, and
scanning them again and again only to determine each time through that
indeed they aren't viable. We can instead remove them once we're going
to have to scan the worklist. This is the easy way to implement removing
them. If this remains on the profile (as I somewhat suspect it will), we
can get a lot more clever here, as the worklist's order is essentially
irrelevant. We can use swapping and fold the two loops to reduce
overhead even when there are many blocks on the worklist but only a few
of them are removed.
llvm-svn: 144531
time it is queried to compute the probability of a single successor.
This makes computing the probability of every successor of a block in
sequence... really really slow. ;] This switches to a linear walk of the
successors rather than a quadratic one. One of several quadratic
behaviors slowing this pass down.
I'm not really thrilled with moving the sum code into the public
interface of MBPI, but I don't (at the moment) have ideas for a better
interface. My direction I'm thinking in for a better interface is to
have MBPI actually retain much more state and make *all* of these
queries cheap. That's a lot of work, and would require invasive changes.
Until then, this seems like the least bad (ie, least quadratic)
solution. Suggestions welcome.
llvm-svn: 144530
correctly handle blocks whose successor weights sum to more than
UINT32_MAX. This is slightly less efficient, but the entire thing is
already linear on the number of successors. Calling it within any hot
routine is a mistake, and indeed no one is calling it. It also
simplifies the code.
llvm-svn: 144527
the sum of the edge weights not overflowing uint32, and crashed when
they did. This is generally safe as BranchProbabilityInfo tries to
provide this guarantee. However, the CFG can get modified during codegen
in a way that grows the *sum* of the edge weights. This doesn't seem
unreasonable (imagine just adding more blocks all with the default
weight of 16), but it is hard to come up with a case that actually
triggers 32-bit overflow. Fortuately, the single-source GCC build is
good at this. The solution isn't very pretty, but its no worse than the
previous code. We're already summing all of the edge weights on each
query, we can sum them, check for an overflow, compute a scale, and sum
them again.
I've included a *greatly* reduced test case out of the GCC source that
triggers it. It's a pretty lame test, as it clearly is just barely
triggering the overflow. I'd like to have something that is much more
definitive, but I don't understand the fundamental pattern that triggers
an explosion in the edge weight sums.
The buggy code is duplicated within this file. I'll colapse them into
a single implementation in a subsequent commit.
llvm-svn: 144526
get loop info structures associated with them, and so we need some way
to make forward progress selecting and placing basic blocks. The
technique used here is pretty brutal -- it just scans the list of blocks
looking for the first unplaced candidate. It keeps placing blocks like
this until the CFG becomes tractable.
The cost is somewhat unfortunate, it requires allocating a vector of all
basic block pointers eagerly. I have some ideas about how to simplify
and optimize this, but I'm trying to get the logic correct first.
Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly
there are other bugs that GCC is tickling that I'm reducing and working
on now.
llvm-svn: 144516
This makes no difference for normal defs, but early clobber dead defs
now look like:
[Slot_EarlyClobber; Slot_Dead)
instead of:
[Slot_EarlyClobber; Slot_Register).
Live ranges for normal dead defs look like:
[Slot_Register; Slot_Dead)
as before.
llvm-svn: 144512
when we fail to place all the blocks of a loop. Currently this is
happening for unnatural loops, and this logic helps more immediately
point to the problem.
llvm-svn: 144504
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
llvm-svn: 144503
branches that also may involve fallthrough. In the case of blocks with
no fallthrough, we can still re-order the blocks profitably. For example
instruction decoding will in some cases continue past an indirect jump,
making laying out its most likely successor there profitable.
Note, no test case. I don't know how to write a test case that exercises
this logic, but it matches the described desired semantics in
discussions with Jakob and others. If anyone has a nice example of IR
that will trigger this, that would be lovely.
Also note, there are still assertion failures in real world code with
this. I'm digging into those next, now that I know this isn't the cause.
llvm-svn: 144499
second algorithm, but only loosely. It is more heavily based on the last
discussion I had with Andy. It continues to walk from the inner-most
loop outward, but there is a key difference. With this algorithm we
ensure that as we visit each loop, the entire loop is merged into
a single chain. At the end, the entire function is treated as a "loop",
and merged into a single chain. This chain forms the desired sequence of
blocks within the function. Switching to a single algorithm removes my
biggest problem with the previous approaches -- they had different
behavior depending on which system triggered the layout. Now there is
exactly one algorithm and one basis for the decision making.
The other key difference is how the chain is formed. This is based
heavily on the idea Andy mentioned of keeping a worklist of blocks that
are viable layout successors based on the CFG. Having this set allows us
to consistently select the best layout successor for each block. It is
expensive though.
The code here remains very rough. There is a lot that needs to be done
to clean up the code, and to make the runtime cost of this pass much
lower. Very much WIP, but this was a giant chunk of code and I'd rather
folks see it sooner than later. Everything remains behind a flag of
course.
I've added a couple of tests to exercise the issues that this iteration
was motivated by: loop structure preservation. I've also fixed one test
that was exhibiting the broken behavior of the previous version.
llvm-svn: 144495
It was off by default.
The new register allocators don't have the problems that made it
necessary to reallocate registers during stack slot coloring.
llvm-svn: 144481
It is worth noting that the old spiller would split live ranges around
basic blocks. The new spiller doesn't do that.
PBQP should do its own live range splitting with
SplitEditor::splitSingleBlock() if desired. See
RAGreedy::tryBlockSplit().
llvm-svn: 144476
RegAllocGreedy has been the default for six months now.
Deleting RegAllocLinearScan makes it possible to also delete
VirtRegRewriter and clean up the spiller code.
llvm-svn: 144475
instance and a concrete inlined instance are the use of DW_TAG_subprogram
instead of DW_TAG_inlined_subroutine and the who owns the tree.
We were also omitting DW_AT_inline from the abstract roots. To fix this,
make sure we mark abstract instance roots with DW_AT_inline even when
we have only out-of-line instances referring to them with DW_AT_abstract_origin.
FileCheck is not a very good tool for tests like this, maybe we should add
a -verify mode to llvm-dwarfdump.
llvm-svn: 144441
instruction lower optimization" in the pre-RA scheduler.
The optimization, rather the hack, was done before MI use-list was available.
Now we should be able to implement it in a better way, perhaps in the
two-address pass until a MI scheduler is available.
Now that the scheduler has to backtrack to handle call sequences. Adding
artificial scheduling constraints is just not safe. Furthermore, the hack
is not taking all the other scheduling decisions into consideration so it's just
as likely to pessimize code. So I view disabling this optimization goodness
regardless of PR11314.
llvm-svn: 144267
The TII.foldMemoryOperand hook preserves implicit operands from the
original instruction. This is not what we want when those implicit
operands refer to the register being spilled.
Implicit operands referring to other registers are preserved.
This fixes PR11347.
llvm-svn: 144247
dragonegg self-host buildbot will recover (it is complaining about object
files differing between different build stages). Original commit message:
Add a hack to the scheduler to disable pseudo-two-address dependencies in
basic blocks containing calls. This works around a problem in which
these artificial dependencies can get tied up in calling seqeunce
scheduling in a way that makes the graph unschedulable with the current
approach of using artificial physical register dependencies for calling
sequences. This fixes PR11314.
llvm-svn: 144188
During the initial RPO traversal of the basic blocks, remember the ones
that are incomplete because of back-edges from predecessors that haven't
been visited yet.
After the initial RPO, revisit all those loop headers so the incoming
DomainValues on the back-edges can be properly collapsed.
This will properly fix execution domains on software pipelined code,
like the included test case.
llvm-svn: 144151
When merging two uncollapsed DomainValues, place a link to the active
DomainValue from the passive DomainValue. This allows old stale
references to the passive DomainValue to be updated to point to the
active DomainValue.
The new resolve() function finds the active DomainValue and updates the
pointer.
This change makes old live-out lists more useful since they may contain
uncollapsed DomainValues that have since been merged into other
DomainValues.
llvm-svn: 144149
This new function will decrement the reference count, and collapse a
domain value when the last reference is gone.
This simplifies DomainValue reference counting, and decouples it from
the LiveRegs array.
llvm-svn: 144131
basic blocks containing calls. This works around a problem in which
these artificial dependencies can get tied up in calling seqeunce
scheduling in a way that makes the graph unschedulable with the current
approach of using artificial physical register dependencies for calling
sequences. This fixes PR11314.
llvm-svn: 144124
The old value may still be referenced by some live-out list, and we
don't wan't to collapse those instructions twice.
This fixes the "Can only swizzle VMOVD" assertion in some armv7 SPEC
builds.
<rdar://problem/10413292>
llvm-svn: 144117
Add support for trimming constants to GetDemandedBits. This fixes some funky
constant generation that occurs when stores are expanded for targets that don't
support unaligned stores natively.
llvm-svn: 144102
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
DomainValues that are only used by "don't care" instructions are now
collapsed to the first possible execution domain after all basic blocks
have been processed. This typically means the PS domain on x86.
For example, the vsel_i64 and vsel_double functions in sse2-blend.ll are
completely collapsed to the PS domain instead of containing a mix of
execution domains created by isel.
llvm-svn: 144037
The enterBasicBlock() function is combining live-out values from
predecessor blocks. The RPO traversal means that more predecessors
have been visited when that happens, only back-edges are missing.
llvm-svn: 144025
the pubnames and pubtypes tables. LLDB can currently use this format
and a full spec is forthcoming and submission for standardization is planned.
A basic summary:
The dwarf accelerator tables are an indirect hash table optimized
for null lookup rather than access to known data. They are output into
an on-disk format that looks like this:
.-------------.
| HEADER |
|-------------|
| BUCKETS |
|-------------|
| HASHES |
|-------------|
| OFFSETS |
|-------------|
| DATA |
`-------------'
where the header contains a magic number, version, type of hash function,
the number of buckets, total number of hashes, and room for a special
struct of data and the length of that struct.
The buckets contain an index (e.g. 6) into the hashes array. The hashes
section contains all of the 32-bit hash values in contiguous memory, and
the offsets contain the offset into the data area for the particular
hash.
For a lookup example, we could hash a function name and take it modulo the
number of buckets giving us our bucket. From there we take the bucket value
as an index into the hashes table and look at each successive hash as long
as the hash value is still the same modulo result (bucket value) as earlier.
If we have a match we look at that same entry in the offsets table and
grab the offset in the data for our final match.
llvm-svn: 143921
the mailing list. Suggestions for other statistics to collect would be
awesome. =]
Currently these are implemented as a separate pass guarded by a separate
flag. I'm not thrilled by that, but I wanted to be able to collect the
statistics for the old code placement as well as the new in order to
have a point of comparison. I'm planning on folding them into the single
pass if / when there is only one pass of interest.
llvm-svn: 143537
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
Don't assume APInt::getRawData() would hold target-aware endianness nor host-compliant endianness. rawdata[0] holds most lower i64, even on big endian host.
FIXME: Add a testcase for big endian target.
FIXME: Ditto on CompileUnit::addConstantFPValue() ?
llvm-svn: 143194
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
trying to legalize the operand types when only the result type
is required to be legalized - the type legalization machinery
will get round to the operands later if they need legalizing.
There can be a point to legalizing operands in parallel with
the result: when this saves compile time or results in better
code. There was only one case in which this was true: when
the operand is also split, so keep the logic for that bit.
As a result of this change, additional operand legalization
methods may need to be introduced to handle nodes where the
result and operand types can differ, like SIGN_EXTEND, but
the testsuite doesn't contain any tests where this is the case.
In any case, it seems better to require such methods (and die
with an assert if they doesn't exist) than to quietly produce
wrong code if we forgot to special case the node in
SplitVecRes_UnaryOp.
llvm-svn: 143026
This code makes different decisions when compiled into x87 instructions
because of different rounding behavior. That caused phase 2/3
miscompares on 32-bit Linux when the phase 1 compiler was built with gcc
(using x87), and the phase 2 compiler was built with clang (using SSE).
This fixes PR11200.
llvm-svn: 143006
An MBB which branches to an EH landing pad shouldn't be considered for tail merging.
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
llvm-svn: 143001
down to this commit. Original commit message:
An MBB which branches to an EH landing pad shouldn't be considered for tail merging.
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
llvm-svn: 142920
In SjLj EH, the jump to the landing pad is not done explicitly through a branch
statement. The EH landing pad is added as a successor to the throwing
BB. Because of that however, the branch folding pass could mistakenly think that
it could merge the throwing BB with another BB. This isn't safe to do.
<rdar://problem/10334833>
llvm-svn: 142891
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.
The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.
As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.
Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.
The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.
llvm-svn: 142743
The assumption in the back-end is that PHIs are not allowed at the start of the
landing pad block for SjLj exceptions.
<rdar://problem/10313708>
llvm-svn: 142689
ZExtPromotedInteger and SExtPromotedInteger based on the operation we legalize.
SetCC return type needs to be legalized via PromoteTargetBoolean.
llvm-svn: 142660
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.
This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.
Test is updated to include both basic loop alignment and nested loop
alignment.
llvm-svn: 142645
block frequency analyses. This differs substantially from the existing
block-placement pass in LLVM:
1) It operates on the Machine-IR in the CodeGen layer. This exposes much
more (and more precise) information and opportunities. Also, the
results are more stable due to fewer transforms ocurring after the
pass runs.
2) It uses the generalized probability and frequency analyses. These can
model static heuristics, code annotation derived heuristics as well
as eventual profile loading. By basing the optimization on the
analysis interface it can work from any (or a combination) of these
inputs.
3) It uses a more aggressive algorithm, both building chains from tho
bottom up to maximize benefit, and using an SCC-based walk to layout
chains of blocks in a profitable ordering without O(N^2) iterations
which the old pass involves.
The pass is currently gated behind a flag, and not enabled by default
because it still needs to grow some important features. Most notably, it
needs to support loop aligning and careful layout of loop structures
much as done by hand currently in CodePlacementOpt. Once it supports
these, and has sufficient testing and quality tuning, it should replace
both of these passes.
Thanks to Nick Lewycky and Richard Smith for help authoring & debugging
this, and to Jakob, Andy, Eric, Jim, and probably a few others I'm
forgetting for reviewing and answering all my questions. Writing
a backend pass is *sooo* much better now than it used to be. =D
llvm-svn: 142641