compute an upper-bound value for the trip count, in addition to
the actual trip count. Use this to allow getZeroExtendExpr and
getSignExtendExpr to fold casts in more cases.
This may eventually morph into a more general value-range
analysis capability; there are certainly plenty of places where
more complete value-range information would allow more folding.
llvm-svn: 70509
Massive check in. This changes the "-fast" flag to "-O#" in llc. If you want to
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'll change the JIT with a follow-up patch.
llvm-svn: 70343
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'm not 100% sure if it's necessary to change it there...
llvm-svn: 70270
the comparison operators were not only unnecessary in the presence of the
implicit conversion; they caused ambiguous overload errors. So I deleted them.
llvm-svn: 70243
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
llvm-svn: 70225
BLOCKNAME and SETRECORDNAME. This allows a bitcode
file to be self describing with pretty names for
records and blocks in addition to numbers. This
enhances llvm-bcanalyzer to use this to print prettily.
llvm-svn: 70165
state out of the BitstreamReader class into a BitstreamCursor class.
Doing this allows the client to have multiple cursors into the same
file, each with potentially different live block stacks and
abbreviation records.
llvm-svn: 70157
true), and casts make me nervous and are verbose anyway, so here's a
ConstantInt::getSigned(Ty, int64_t) method. Just overloading
ConstantInt::get() to take an int64_t too would cause ambiguous
overload errors."
Patch by Jeffrey Yasskin!
llvm-svn: 69958
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
llvm-svn: 69952
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
llvm-svn: 69892
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
llvm-svn: 69743
in the MachineFunction class, renaming it to addLiveIn for consistency with
the same method in MachineBasicBlock. Thanks for Anton for suggesting this.
llvm-svn: 69615
value type union: this field was causing problems for
some compilers on 64 bit systems, presumably because
SimpleTy is 32 bits wide while the other fields are
64 bits wide.
llvm-svn: 69515
type as the vector element type: allow them to be of
a wider integer type than the element type all the way
through the system, and not just as far as LegalizeDAG.
This should be safe because it used to be this way
(the old type legalizer would produce such nodes), so
backends should be able to handle it. In fact only
targets which have legal vector types with an illegal
promoted element type will ever see this (eg: <4 x i16>
on ppc). This fixes a regression with the new type
legalizer (vec_splat.ll). Also, treat SCALAR_TO_VECTOR
the same as BUILD_VECTOR. After all, it is just a
special case of BUILD_VECTOR.
llvm-svn: 69467
have pointer types, though in contrast to C pointer types, SCEV
addition is never implicitly scaled. This not only eliminates the
need for special code like IndVars' EliminatePointerRecurrence
and LSR's own GEP expansion code, it also does a better job because
it lets the normal optimizations handle pointer expressions just
like integer expressions.
Also, since LLVM IR GEPs can't directly index into multi-dimensional
VLAs, moving the GEP analysis out of client code and into the SCEV
framework makes it easier for clients to handle multi-dimensional
VLAs the same way as other arrays.
Some existing regression tests show improved optimization.
test/CodeGen/ARM/2007-03-13-InstrSched.ll in particular improved to
the point where if-conversion started kicking in; I turned it off
for this test to preserve the intent of the test.
llvm-svn: 69258
to support replacing a node with another that has a superset of
the result types. Use this instead of calling
ReplaceAllUsesOfValueWith for each value.
llvm-svn: 69209
promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
llvm-svn: 68996
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
llvm-svn: 68961
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
llvm-svn: 68940
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
llvm-svn: 68847
the key. This will cause it to create a new std::string, which isn't
wanted. Instead, pass back the "const char*". Modify the EmitString() method to
take a "const char*".
llvm-svn: 68741
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
llvm-svn: 68714
with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce
SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG
instructions), and teach the DAGCombiner to take advantage of this on
targets which support it. This eliminates many redundant
zero-extension operations on x86-64.
This adds a new TargetLowering hook, isZExtFree. It's similar to
isTruncateFree, except it only applies to actual definitions, and not
no-op truncates which may not zero the high bits.
Also, this adds a new optimization to SimplifyDemandedBits: transform
operations like x+y into (zext (add (trunc x), (trunc y))) on targets
where all the casts are no-ops. In contexts where the high part of the
add is explicitly masked off, this allows the mask operation to be
eliminated. Fix the DAGCombiner to avoid undoing these transformations
to eliminate casts on targets where the casts are no-ops.
Also, this adds a new two-address lowering heuristic. Since
two-address lowering runs before coalescing, it helps to be able to
look through copies when deciding whether commuting and/or
three-address conversion are profitable.
Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle
the case that a clobber range extended both before and beyond an
existing live range. In that case, multiple live ranges need to be
added. This was exposed by the new subreg coalescing code.
Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the
spiller behavior it was looking for no longer occurrs with the new
instruction selection.
llvm-svn: 68576
When compiling in Thumb mode, only the low (R0-R7) registers are available
for most instructions. Breaking the low registers into a new register class
handles this. Uses of R12, SP, etc, are handled explicitly where needed
with copies inserted to move results into low registers where the rest of
the code generator can deal with them.
llvm-svn: 68545
elements in a form that is efficient for the reader to just get a
pointer in memory and start reading. APIs to do efficient reading
and writing are still todo.
llvm-svn: 68465
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
llvm-svn: 68420
- Particularly nice for small constant strings, which get optimized
down nicely. On a synthetic benchmark writing out "hello" in a
loop, this is about 2x faster with gcc and 3x faster with
llvm-gcc. llc on insn-attrtab.bc from 403.gcc is about .5% faster.
- I tried for a fancier solution which wouldn't increase code size as
much (by trying to match constant arrays), but can't quite make it
fly.
llvm-svn: 68396
"The code was doing "if (End+NumInputs > Capacity) ...". If End is
close to 0xFFFFFFFF and NumInputs is large, it'll overflow, the
condition will come out false, and the vector won't grow to
accommodate the new elements, and the program will crash in memmove."
Patch by Jeffrey Yasskin!
llvm-svn: 68277
- The code is silly, I'm just amusing myself. Rewrite to be efficient
if you like. :)
Also, if you wish to debate the proper names of the triple components
I'm all ears.
llvm-svn: 68252
which are effectively smart pointers to Value*'s. They are both very light
weight and simple, and react to values being destroyed or being RAUW'd.
WeakVN does a best effort to follow a value around, including through RAUW
operations and will get nulled out of the value is destroyed. This is useful
for the eventual "metadata that references a value" work, because it is a
reference to a value that does not show up on its use_* list.
AssertingVH is a pointer that compiles down to a dumb raw pointer when
assertions are disabled. When enabled, it emits an assertion if the
pointed-to value is destroyed while it is still being referenced. This
is very useful for Maps and other things, and should have caught the recent
bugs in CallGraph and Reassociate, for example.
llvm-svn: 68149