Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by John Wiegley.
These type traits are used for parsing code that employs certain features of
the Embarcadero C++ compiler. Several of these constructs are also desired by
libc++, according to its project pages (such as __is_standard_layout).
llvm-svn: 130342
a destination pointer that points to a non-POD type. This can flag such
horrible bugs as overwriting vptrs when a previously POD structure is
suddenly given a virtual method, or creating objects that crash on
practically any use by zero-ing out a member when its changed from
a const char* to a std::string, etc.
llvm-svn: 130299
in the classification of template names and using declarations. We now
properly typo-correct the leading identifiers in statements to types,
templates, values, etc. As an added bonus, this reduces the number of
lookups required for disambiguation.
llvm-svn: 130288
looking at the context and the correction and using a custom
diagnostic. Also, enable some Fix-It tests that were somewhat lamely
disabled.
llvm-svn: 130283
determine which is a better conversion to "void*", be sure to perform
the comparison using the safe-for-id
ASTContext::canAssignObjCInterfaces() rather than the asserts-with-id
ASTContext::canAssignObjCInterfaces().
Fixes <rdar://problem/9327203>.
llvm-svn: 130259
the qualifiers (e.g., GC qualifiers) on the type we're converting
from, rather than just blindly adopting the qualifiers of the type
we're converting to or dropping qualifiers altogether.
As an added bonus, properly diagnose GC qualifier mismatches to
eliminate a crash in the overload resolution failure diagnostics.
llvm-svn: 130255
The size of the array may not be aligned according to alignment of its elements if an alignment attribute is
specified in a typedef. Fixes rdar://8665729 & http://llvm.org/PR5637.
llvm-svn: 130242
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
invalid expression rather than the far-more-generic "error". Fixes a
mild regression in error recovery uncovered by the GCC testsuite.
llvm-svn: 130128
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
This fixes 1 error when parsing MSVC 2008 headers with clang.
Must "return true;" even if it is a warning because the rest of the code path assumes that SS is set to something. The parser will get back on its feet and continue parsing the rest of the declaration correctly so it is not a problem.
llvm-svn: 130088
I've sent off an email requesting clarification on a few things that
I wasn't sure how to handle.
This also necessitated making prefixes and unresolved-prefixes get
mangled separately.
llvm-svn: 130083
performs name lookup for an identifier and resolves it to a
type/expression/template/etc. in the same step. This scheme is
intended to improve both performance (by reducing the number of
redundant name lookups for a given identifier token) and error
recovery (by giving Sema a chance to correct type names before the
parser has decided that the identifier isn't a type name). For
example, this allows us to properly typo-correct type names at the
beginning of a statement:
t.c:6:3: error: use of undeclared identifier 'integer'; did you mean
'Integer'?
integer *i = 0;
^~~~~~~
Integer
t.c:1:13: note: 'Integer' declared here
typedef int Integer;
^
Previously, we wouldn't give a Fix-It because the typo correction
occurred after the parser had checked whether "integer" was a type
name (via Sema::getTypeName(), which isn't allowed to typo-correct)
and therefore decided to parse "integer * i = 0" as an expression. By
typo-correcting earlier, we typo-correct to the type name Integer and
parse this as a declaration.
Moreover, in this context, we can also typo-correct identifiers to
keywords, e.g.,
t.c:7:3: error: use of undeclared identifier 'vid'; did you mean
'void'?
vid *p = i;
^~~
void
and recover appropriately.
Note that this is very much a work-in-progress. The new
Sema::ClassifyName is only used for expression-or-declaration
disambiguation in C at the statement level. The next steps will be to
make this work for the same disambiguation in C++ (where
functional-style casts make some trouble), then push it
further into the parser to eliminate more redundant name lookups.
Fixes <rdar://problem/7963833> for C and starts us down the path of
<rdar://problem/8172000>.
llvm-svn: 130082
APInt::toString doesn't do those, but it's easy to postprocess that output,
and that's probably better than adding another knob to that method.
llvm-svn: 130081
'__is_literal' type trait for GCC compatibility. At least one relased
version if libstdc++ uses this name for the trait despite it not being
documented anywhere.
llvm-svn: 130078
operators in C++ record declarations.
This patch starts off by updating a bunch of the standard citations to
refer to the draft 0x standard so that the semantics intended for move
varianst is clear. Where necessary these are duplicated so they'll be
available in doxygen.
It adds bit fields to keep track of the state for the move constructs,
and updates all the code necessary to track this state (I think) as
members are declared for a class. It also wires the state into the
various trait-like accessors in the AST's API, and tests that the type
trait expressions now behave correctly in the presence of move
constructors and move assignment operators.
This isn't complete yet due to these glaring FIXMEs:
1) No synthesis of implicit move constructors or assignment operators.
2) I don't think we correctly enforce the new logic for both copy and
move trivial checks: that the *selected* copy/move
constructor/operator is trivial. Currently this requires *all* of them
to be trivial.
3) Some of the trait logic needs to be folded into the fine-grained
trivial bits to more closely match the wording of the standard. For
example, many of the places we currently set a bit to track POD-ness
could be removed by querying other more fine grained traits on
demand.
llvm-svn: 130076
'DerivesHasFoo' types for various non-POD constructs in the base class.
Only __is_pod and __is_trivial are wired up to these, not sure how much
more of this type of exhaustive testing is really interesting.
llvm-svn: 130075
non-POD type.
It might be nicer to have a Derives* variant for each of HasCons,
HasCopy, etc. Then we could test each of those and also test the __has_*
traits. WIP.
llvm-svn: 130074
of the tests using those types to have a (hopefully) more logical
ordering now that doing so doesn't cause unreadable deltas of counters
changing.
llvm-svn: 130073
that requires needless noise in every patch (due to numbers changing) or
poorly grouped test cases in order to have strictly increasing numbers.
This will make my subsequent patches much less ugly. =D
llvm-svn: 130072
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057
matches GCC behavior which libstdc++ uses to limit #warning-based
messages about deprecation.
The machinery involves threading this through a new '-fdeprecated-macro'
flag for CC1. The flag defaults to "on", similarly to -Wdeprecated. We
turn the flag off in the driver when the warning is turned off (modulo
matching some GCC bugs). We record this as a language option, and key
the preprocessor on the option when introducing the define.
A separate flag rather than a '-D' flag allows us to properly represent
the difference between C and C++ builds (only C++ receives the define),
and it allows the specific behavior of following -Wdeprecated without
potentially impacting the set of user-provided macro flags.
llvm-svn: 130055
changes language semantics in C and ObjC (which Clang has supported for
a while), in C++ it's the name used for Clang's
-Wdeprecated-writable-strings.
Clang's name is at least less overloaded if still confusing (the string
isn't writable, we just allow converting to a non-const pointer without
warning), so I've left it in place and made the GCC name an alias for
compatibility.
With this I've implemented all the aspects of GCC's -Wwrite-strings I've
encountered which didn't work with Clang.
llvm-svn: 130052
-Wwrite-strings. First and foremost, once the positive form of the flag
was passed, it could never be disabled by passing -Wno-write-strings.
Also, the diagnostic engine couldn't in turn use -Wwrite-strings to
control diagnostics (as GCC does) because it was essentially hijacked to
drive the language semantics.
Fix this by giving CC1 a clean '-fconst-strings' flag to enable
const-qualified strings in C and ObjC compilations. Corresponding
'-fno-const-strings' is also added. Then the driver is taught to
introduce '-fconst-strings' in the CC1 command when '-Wwrite-strings'
dominates.
This entire flag is basically GCC-bug-compatibility driven, so we also
match GCC's bug where '-w' doesn't actually disable -Wwrite-strings. I'm
open to changing this though as it seems insane.
llvm-svn: 130051
new templates that need to be instantiated and vice-versa. Iterate
until we've instantiated all required templates and defined all
required vtables. Fixed PR9325 / <rdar://problem/9055177>.
llvm-svn: 130023
ObjC NeXt runtime where method pointer registered in
metadata belongs to an unrelated method. Ast part of this fix,
I turned at @end missing warning (for class
implementations) into an error as we can never
be sure that meta-data being generated is correct.
// rdar://9072317
llvm-svn: 130019
cases that demonstrates exactly why this does indeed apply in 0x mode.
If isPOD is currently broken in 0x mode, we should fix that directly
rather than papering over it here.
llvm-svn: 130007
double data[20000000] = {0};
we would blow out the memory by creating 20M Exprs to fill out the initializer.
To fix this, if the initializer list initializes an array with more elements than
there are initializers in the list, have InitListExpr store a single 'ArrayFiller' expression
that specifies an expression to be used for value initialization of the rest of the elements.
Fixes rdar://9275920.
llvm-svn: 129896
adjust the a ending macro location to the end of the instantiation
location before adjusting it to the end of the token. Fixes
<rdar://problem/9021561>.
llvm-svn: 129872
gcc's unused warnings which don't get emitted if the function is referenced even in an unevaluated context
(e.g. in templates, sizeof, etc.). Also, saying that a function is 'unused' because it won't get codegen'ed
is somewhat misleading.
- Don't emit 'unused' warnings for functions that are referenced in any part of the user's code.
- A warning that an internal function/variable won't get emitted is useful though, so introduce
-Wunneeded-internal-declaration which will warn if a function/variable with internal linkage is not
"needed" ('used' from the codegen perspective), e.g:
static void foo() { }
template <int>
void bar() {
foo();
}
test.cpp:1:13: warning: function 'foo' is not needed and will not be emitted
static void foo() { }
^
Addresses rdar://8733476.
llvm-svn: 129794
CL_AddressableVoid is the expression classification used for void
expressions whose address can be taken, i.e. the result of [], *
or void variable references in C, as opposed to things like the
result of a void function call.
llvm-svn: 129783
implementation such as
@synthesize Prop1 =
Give priority to ivars whose type matches or closely matches the
property type (as we do for several other kinds of
results). Additionally, if there is an ivar with the same name as the
property, or differs only due to a _ prefix or suffix, give that ivar
a priority bump. Finally, verify that this search is properly
returning ivars within class extensions and implementations
(<rdar://problem/8488854>).
llvm-svn: 129699
it down. we effectively were compile the testcase into:
void test14(int x) {
switch (x) {
case 11: break;
case 42: test14(97); // fallthrough
default: test14(42); break;
which is not the same thing at all. This fixes a miscompilation of
MallocBench/gs seen on the clang-x86_64-linux-fnt buildbot.
llvm-svn: 129679
turns out that a field or base needs to be laid out in the tail padding of
the base, CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary will convert
it to an array of i8.
I've audited the new test results to make sure that they are still valid. I've
also verified that we pass a self-host with this change.
This (finally) fixes PR5589!
llvm-svn: 129673
are trivial. This exposes opportunities earlier, and allows fastisel
to do good things with these at -O0.
This addresses rdar://9289468 - clang doesn't fold memset_chk at -O0
llvm-svn: 129651
by making the isCheapEnoughToEvaluateUnconditionally predicate handle anything that folds to a constant. In particular, we now fold enums.
llvm-svn: 129649
Objective-C pointer to void* as a "conversion to void*". This allows
us to prefer an Objective-C object pointer conversion to a superclass
object pointer over an Objective-C object pointer conversion to
cv-void*. Fixes PR9735.
llvm-svn: 129603
address space. I could see that this functionality would be useful,
but not in its current form (where the address space is ignored):
rather, we'd want to encode the address space into the parameter list
passed to operator new/operator delete somehow, which would require a
bunch more semantic analysis.
llvm-svn: 129593
dealing with address-space- and GC-qualified pointers. Previously,
these qualifiers were being treated just like cvr-qualifiers (in some
cases) or were completely ignored, leading to uneven behavior. For
example, const_cast would allow conversion between pointers to
different address spaces.
The new semantics are fairly simple: reinterpret_cast can be used to
explicitly cast between pointers to different address spaces
(including adding/removing addresss spaces), while
static_cast/dynamic_cast/const_cast do not tolerate any changes in the
address space. C-style casts can add/remove/change address spaces
through the reinterpret_cast mechanism. Other non-CVR qualifiers
(e.g., Objective-C GC qualifiers) work similarly.
As part of this change, I tweaked the "casts away constness"
diagnostic to use the term "casts away qualifiers". The term
"constness" actually comes from the C++ standard, despite the fact
that removing "volatile" also falls under that category. In Clang, we
also have restrict, address spaces, ObjC GC attributes, etc., so the
more general "qualifiers" is clearer.
llvm-svn: 129583
is so broken that Sema can't form a declaration for it, don't bother
trying to parse the definition later. Fixes <rdar://problem/9221993>.
llvm-svn: 129547
completion, look through block pointer and function pointer types to the
result type of the block/function. Fixes <rdar://problem/9282583>.
llvm-svn: 129535
AAPCS+VFP), similar to fastcall / stdcall / whatevercall seen on x86.
In particular, all library functions should always be AAPCS regardless of floating point ABI used.
llvm-svn: 129534
diagnosing it as an error rather than looping infinitely. Also,
explicitly disallow @defs in Objective-C++. Fixes <rdar://problem/9260136>.
llvm-svn: 129521
named by the nested-name-specifier is same or base of the class in which the member expression appears.
It seems we also had an ill-formed test case, mon dieu! Fixes rdar://8576107.
llvm-svn: 129493
evaluated and unevaluated contexts. Add some testing of sizeof and
typeid.
Both of the typeid tests added here were triggering warnings previously.
Now the one false positive is suppressed without suppressing the warning
on actually buggy code.
llvm-svn: 129431
This fixes 1 error when parsing the MSVC 2008 header files.
Example:
template<class T> class A {
public:
typedef int TYPE;
};
template<class T> class B : public A<T> {
public:
A<T>::TYPE a; // no typename required because A<T> is a base class.
};
llvm-svn: 129425
there is no reason to align them higher.
- This roughly matches llvm-gcc's r126913.
- It is an open question whether or not we should do this for cstring's in
general (code size vs optimization potential), for now we just match llvm-gcc
until someone wants to run some experiments.
llvm-svn: 129410
because the result is ignored. The particular example here is with
property l-values, but there could be all sorts of lovely casts that this
isn't safe for. Sink the check into the one case that seems to actually
be capable of honoring this.
llvm-svn: 129397
RTTI is disabled. Similarly, don't suggest throw or try as code
completion results when C++ exceptions are disabled. Fixes
<rdar://problem/9193560>.
llvm-svn: 129346
weak linkage. Also, fix a problem where global weak variables
with non-trivial initializers were getting guard variables, or at
least were checking for them and then crashing.
llvm-svn: 129342
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
rewriting the literal when the value is integral. It is not uncommon to
see code written as:
const int kBigNumber = 42e5;
Without any real awareness that this is no longer an ICE. The note helps
automate and ease the process of fixing code that violates the warning.
llvm-svn: 129243
Validates inputs are not NULL, checks for overlapping strings, concatenates the strings checking for buffer overflow, sets the length of the destination string to the sum of the s1 length and the s2 length, binds the return value to the s1 value.
llvm-svn: 129215
type rather than just the literal 'false'. This begins fixing PR9612,
but the message is now wrong. WIP, the cleanup of the messaging is next.
llvm-svn: 129204
to be reworked to model CallEnter/CallExit (just like all other calls). For now, treat constructors mostly
like other function calls, making the analysis of C++ code just a little more useful.
llvm-svn: 129166
definitely have a path leading to them, and possibly have a path leading
to them; reflect that distinction in the warning text emitted.
llvm-svn: 129126
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
marked explicitly as uninitialized through direct self initialization:
int x = x;
With r128894 we prevented warnings about this code, and this patch
teaches the analysis engine to continue analyzing subsequent uses of
'x'. This should wrap up PR9624.
There is still an open question of whether we should suppress the
maybe-uninitialized warnings resulting from variables initialized in
this fashion. The definitely-uninitialized uses should always be warned.
llvm-svn: 128932
int x = x;
GCC disables its warnings on this construct as a way of indicating that
the programmer intentionally wants the variable to be uninitialized.
Only the warning on the initializer is turned off in this iteration.
This makes the code a lot more ugly, but starts commenting the
surprising behavior here. This is a WIP, I want to refactor it
substantially for clarity, and to determine whether subsequent warnings
should be suppressed or not.
llvm-svn: 128894
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
a couple of operator overloads which form interesting expressions in the
AST.
I added test cases for both bugs with the c-index-test's token
annotation feature. Also, thanks to John McCall for confirming that this
is the correct solution.
llvm-svn: 128768
the array alignment to the array access.
- This is more or less the best we can do without having alignment present in
the type system, but is a long way from truly matching how GCC handles this.
llvm-svn: 128691
Note this can potentially be enhanced to detect if the __block variable
is actually written by the block, or only when the block "escapes" or
is actually used, but that requires more analysis than it is probably worth
for this simple check.
llvm-svn: 128681
Models mempcpy() so that if length is NULL the destination pointer is returned. Otherwise, the source and destination are confirmed not to be NULL and not overlapping. Finally the copy is validated to not cause a buffer overrun and the return value is bound to the address of the byte after the last byte copied.
llvm-svn: 128677
__block object copy/dispose helpers for C++ objects with those for
different variables with completely different semantics simply because
they happen to both be no more aligned than a pointer.
Found by inspection.
Also, internalize most of the helper generation logic within CGBlocks.cpp,
and refactor it to fit my peculiar aesthetic sense.
llvm-svn: 128618
from how we process ordinary function calls, had a tremendous about of redundancy, and relied
strictly on inlining behavior (which was incomplete) to provide semantics instead of falling
back to the conservative analysis we use for C functions. This is a significant step into
making C++ analyzer support more useful.
llvm-svn: 128557