If the root def of for renaming is a noop-pseudo instruction like kill,
we would end up without a correct def for the renamed register, causing
miscompiles.
This patch conservatively bails out on any pseudo instruction.
This fixes https://bugs.chromium.org/p/chromium/issues/detail?id=1037912#c70
The pattern is also mishandled by the generated matcher, so workaround
this as in the DAG path.
The existing DAG tests aren't particularly targeted to just this one
intrinsic. These also end up differing in scheduling from SGPR->VGPR
operand constraint copies.
Summary:
We create a number of standard types of control sections in multiple places for
things like the function descriptors, external references and the TOC anchor
among others, so it is possible for their properties to be defined
inconsistently in different places. This refactor moves their creation and
properties into functions in the TargetLoweringObjectFile class hierarchy, where
functions for retrieving various special types of sections typically seem
to reside.
Note: There is one case in PPCISelLowering which is specific to function entry
points which we don't address since we don't have access to the TLOF there.
Reviewers: DiggerLin, jasonliu, hubert.reinterpretcast
Reviewed By: jasonliu, hubert.reinterpretcast
Subscribers: wuzish, nemanjai, hiraditya, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72347
Summary:
Without the BFI update, some hot blocks are incorrectly treated as cold code.
This fixes a FDO perf regression in the TSVC benchmark from D71288.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73146
The waterfall utility function blindly inserts a phi for every def in
the loop. We don't need this one to be preserved for every
iteration. Saves an extra phi and copy inside the loop body.
1. if users don't specific -mattr, the default target-feature come
from IR attribute.
2. fixed bug and re-land this patch
Reviewers: lenary, asb
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70837
The result and source vector are going to be tied, so these need to be
the same bank.
The inserted value also needs to be broken down based on the result
bank, not the inserted value itself.
Handle dynamic vector extracts that use an index that's an add of a
constant offset into moving the base subregister of the indexing
operation.
Force the add into the loop in regbankselect, which will be recognized
when selected.
Summary: select and selectcc isel patterns and tests for i32/i64 and fp32/fp64.
Includes optimized selectcc patterns for fmin/fmax/maxs/mins.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D73195
DAGCombiner does this, but divisions expanded here miss this
optimization. Since 67aa18f165,
divisions have been expanded here and missed out on this
optimization. Avoids test regressions in a future patch.
This is 1 of the potential folds uncovered by extending D72521.
We don't seem to do this in the backend either (unless I'm not
seeing some target-specific transform).
icc and gcc (appears to be target-specific) do this transform.
Differential Revision: https://reviews.llvm.org/D73057
This is a very basic MVE gather/scatter cost model, based roughly on the
code that we will currently produce. It does not handle truncating
scatters or extending gathers correctly yet, as it is difficult to tell
that they are going to be correctly extended/truncated from the limited
information in the cost function.
This can be improved as we extend support for these in the future.
Based on code originally written by David Sherwood.
Differential Revision: https://reviews.llvm.org/D73021
This patch also fixes up a number of cases in DAGCombine and
SelectionDAGBuilder where the size of a scalable vector is used in a
fixed-width context (thus triggering an assertion failure).
Reviewers: efriedma, c-rhodes, rovka, cameron.mcinally
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71215
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.
The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.
The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
get sorted next to each other, and
- shouldClusterMemOps knows what they mean.
One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.
Differential Revision: https://reviews.llvm.org/D71655
This using the wrong result register, and dropping the result entirely
for v2f16. This would fail to select on the scalar case. I believe it
was also mishandling packed/unpacked subtargets.
In LLVM IR, vscale can be represented with an intrinsic. For some targets,
this is equivalent to the constexpr:
getelementptr <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1
This can be used to propagate the value in CodeGenPrepare.
In ISel we add a node that can be legalized to one or more
instructions to materialize the runtime vector length.
This patch also adds SVE CodeGen support for VSCALE, which maps this
node to RDVL instructions (for scaled multiples of 16bytes) or CNT[HSD]
instructions (scaled multiples of 2, 4, or 8 bytes, respectively).
Reviewers: rengolin, cameron.mcinally, hfinkel, sebpop, SjoerdMeijer, efriedma, lattner
Reviewed by: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68203
Summary:
Support for i<N> and fp32/64 arguments (in register), return values
and constants along with tests.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D73092
The code was originally ported from SelectionDAG, which does CSE behind the scenes
automatically. When copying the return address from LR live into the function, we
need to make sure to use the single copy on function entry. Any later copy from LR
could be using clobbered junk.
Implement this by caching the copy in the per-MF state in the selector.
Should hopefully fix the AArch64 sanitiser buildbot failure.
Summary:
This is the first step towards complete removal of AST caching from
LICM. Attempts to keep LICM's AST cache up to date across passes can lead
to miscompiles like this one: https://bugs.llvm.org/show_bug.cgi?id=44320.
LICM has already switched to using MemorySSA to do sinking and hoisting
and only builds an AliasSetTracker on demand for the promoteToScalars
step, without caching it from one LICM instance to the next. Given this,
we don't have compile-time reasons to keep AST caching any more.
The only scenario where the caching would be used currently is when
using the LegacyPassManager and setting -enable-mssa-loop-dependency=false.
This switch should help us to surface any possible issues that may arise
along this way, also it turns subsequent removal of AST caching into NFC.
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed By: asbirlea
Subscribers: hiraditya, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73081
Summary:
Check that a s_cbranch_execz is not a loop exit before removing it.
As the pass is generating infinite loops.
Reviewers: cdevadas, arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, tpr, t-tye, hiraditya, kerbowa, llvm-commits, dstuttard, foad
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72997
The current implementation of skip insertion (SIInsertSkip) makes it a
mandatory pass required for correctness. Initially, the idea was to
have an optional pass. This patch inserts the s_cbranch_execz upfront
during SILowerControlFlow to skip over the sections of code when no
lanes are active. Later, SIRemoveShortExecBranches removes the skips
for short branches, unless there is a sideeffect and the skip branch is
really necessary.
This new pass will replace the handling of skip insertion in the
existing SIInsertSkip Pass.
Differential revision: https://reviews.llvm.org/D68092
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces
IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The
ManglingOptions struct defines the emulated-TLS state (via a bool member,
EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The
IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the
CompileFunction typedef used to), but adds a method to return the
IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced
when a thread local global variable defined at the IR level is compiled with or
without emulated TLS. This is required for ORCv2, where MaterializationUnits
must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR
compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler,
rather than an IRCompileLayer::CompileFunction, however this should be a
straightforward change (see modifications to CompileUtils.* in this patch for an
example).
In GlobalISel we may in some unfortunate circumstances generate PHIs with
operands that are on separate banks. If-conversion doesn't currently check for
that case and ends up generating a CSEL on AArch64 with incorrect register
operands.
Differential Revision: https://reviews.llvm.org/D72961
Summary:
We don't have control/verify what will be the RHS of the division, so it might
happen to be zero, causing UB.
Reviewers: Vasilis, RKSimon, ABataev
Reviewed By: ABataev
Subscribers: vporpo, ABataev, hiraditya, llvm-commits, vdmitrie
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72740
Currently we fail to lower non-termporal stores for 256+ bit vectors
to STNPQ, because type legalization will split them up to 128 bit stores
and because there are no single non-temporal stores, creating STPNQ
in the Load/Store optimizer would be quite tricky.
This patch adds custom lowering for 256 bit non-temporal vector stores
to improve the generated code.
Reviewers: dmgreen, samparker, t.p.northover, ab
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D72919
Summary:
New `@test13` in `Attributor/align.ll` is the main motivation - `null` pointer
really does not limit our alignment knowledge, in fact it is fully aligned
since it has no bits set.
Here we don't special-case `null` pointer because it is somewhat controversial
to add one more place where we enforce that `null` pointer is zero,
but instead we do the more general thing of trying to perform constant-fold
of pointer constant to an integer, and perform alignment inferrment on that.
Reviewers: jdoerfert, gchatelet, courbet, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, arphaman, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73131
Pointers of unrecognized address spaces shoudl be treated as
global-like pointers. Even if loads and stores of them aren't handled,
dumb operations that just operate on the bits should work.
Summary:
Multivalue calls both take and return an arbitrary number of
arguments, but ISel only supports one or the other in a single
instruction. To get around this, calls are modeled as two pseudo
instructions during ISel. These pseudo instructions, CALL_PARAMS and
CALL_RESULTS, are recombined into a single CALL MachineInstr in a
custom emit hook.
RegStackification and the MC layer will additionally need to be made
aware of multivalue calls before the tests will produce correct
output.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71496
Summary:
WebAssembly is unique among upstream targets in that it does not at
any point use physical registers to store values. Instead, it uses
virtual registers to model positions in its value stack. This means
that some target-independent lowering activities that would use
physical registers need to use virtual registers instead for
WebAssembly and similar downstream targets. This CL generalizes the
existing `usesPhysRegsForPEI` lowering hook to
`usesPhysRegsForValues` in preparation for using it in more places.
One such place is in InstrEmitter for instructions that have variadic
defs. On register machines, it only makes sense for these defs to be
physical registers, but for WebAssembly they must be virtual registers
like any other values. This CL changes InstrEmitter to check the new
target lowering hook to determine whether variadic defs should be
physical or virtual registers.
These changes are necessary to support a generalized CALL instruction
for WebAssembly that is capable of returning an arbitrary number of
arguments. Fully implementing that instruction will require additional
changes that are described in comments here but left for a follow up
commit.
Reviewers: aheejin, dschuff, qcolombet
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71484
Add support for converting Signaling NaN, and a NaN Payload from string.
The NaNs (the string "nan" or "NaN") may be prefixed with 's' or 'S' for defining a Signaling NaN.
A payload for a NaN can be specified as a suffix.
It may be a octal/decimal/hexadecimal number in parentheses or without.
Differential Revision: https://reviews.llvm.org/D69773
These names have been changed from CamelCase to camelCase, but there were
many places (comments mostly) that still used the old names.
This change is NFC.
We removed UseVSXReg flag in https://reviews.llvm.org/D58685
But we did not reclain the bit 6 it was assigned,
this will become confusing and a hole later..
We should reclaim it as early as possible before new bits.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D72649
This was unconditionally folding this to the source operand, even if the access was out of bounds. Use undef instead of the extract is not the first element.
This helps with some cases where 3-vectors are legalized and avoids processing the 4th component.
Original Patch by: arsenm (Matt Arsenault)
Differential Revision: https://reviews.llvm.org/D51589
Extends the gather/scatter pass in MVEGatherScatterLowering.cpp to
enable the transformation of masked scatters into calls to MVE's masked
scatter intrinsic.
Differential Revision: https://reviews.llvm.org/D72856
There's no reason to introduce a new, unnaturally sized value
here. This has a chance to produce worse code with
legalization. Avoids regression in a future patch.
a785209bc2 switched to using a pseudos instead of manually tying
operands on the regular instruction. The VGPR indexing mode path
should have the same problems that change attempted to avoid, so these
should use the same strategy.
Use a single pseudo for the VGPR indexing mode and movreld paths, and
expand it based on the subtarget later. These have essentially the
same constraints, reading the index from m0.
Switch from using an offset to the subregister index directly, instead
of computing an offset and re-adding it back. Also add missing pseudos
for existing register class sizes.
Summary:
Follow-up from https://reviews.llvm.org/D71733. Also moved an
initialization to the base class, where it belonged in the first place.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72949
Document some high level strategies that should be used for register
bank selection. The constant bus restriction section hasn't actually
been implemented yet.
Differential revision: https://reviews.llvm.org/D72701
The patch adds a new option ABI for Hexagon. It primary deals with
the way variable arguments are passed and is use in the Hexagon Linux Musl
environment.
If a callee function has a variable argument list, it must perform the
following operations to set up its function prologue:
1. Determine the number of registers which could have been used for passing
unnamed arguments. This can be calculated by counting the number of
registers used for passing named arguments. For example, if the callee
function is as follows:
int foo(int a, ...){ ... }
... then register R0 is used to access the argument ' a '. The registers
available for passing unnamed arguments are R1, R2, R3, R4, and R5.
2. Determine the number and size of the named arguments on the stack.
3. If the callee has named arguments on the stack, it should copy all of these
arguments to a location below the current position on the stack, and the
difference should be the size of the register-saved area plus padding
(if any is necessary).
The register-saved area constitutes all the registers that could have
been used to pass unnamed arguments. If the number of registers forming
the register-saved area is odd, it requires 4 bytes of padding; if the
number is even, no padding is required. This is done to ensure an 8-byte
alignment on the stack. For example, if the callee is as follows:
int foo(int a, ...){ ... }
... then the named arguments should be copied to the following location:
current_position - 5 (for R1-R5) * 4 (bytes) - 4 (bytes of padding)
If the callee is as follows:
int foo(int a, int b, ...){ ... }
... then the named arguments should be copied to the following location:
current_position - 4 (for R2-R5) * 4 (bytes) - 0 (bytes of padding)
4. After any named arguments have been copied, copy all the registers that
could have been used to pass unnamed arguments on the stack. If the number
of registers is odd, leave 4 bytes of padding and then start copying them
on the stack; if the number is even, no padding is required. This
constitutes the register-saved area. If padding is required, ensure
that the start location of padding is 8-byte aligned. If no padding is
required, ensure that the start location of the on-stack copy of the
first register which might have a variable argument is 8-byte aligned.
5. Decrement the stack pointer by the size of register saved area plus the
padding. For example, if the callee is as follows:
int foo(int a, ...){ ... } ;
... then the decrement value should be the following:
5 (for R1-R5) * 4 (bytes) + 4 (bytes of padding) = 24 bytes
The decrement should be performed before the allocframe instruction.
Increment the stack-pointer back by the same amount before returning
from the function.
This should be the last step needed to solve the problem in the
description of PR44153:
https://bugs.llvm.org/show_bug.cgi?id=44153
If we're casting an FP value to int, testing its signbit, and then
choosing between a value and its negated value, that's a
complicated way of saying "copysign":
(bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
Differential Revision: https://reviews.llvm.org/D72643
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, nicolasvasilache
Subscribers: hiraditya, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73041
As mentioned in D72643, we'd like to be able to assert that any select
of equivalent constants has been removed before we're deep into InstCombine.
But there's a loophole in that assertion for vectors with undef elements
that don't match exactly.
This patch should close that gap. If we have undefs, we can't safely
propagate those unless both constants elements for that lane are undef.
Differential Revision: https://reviews.llvm.org/D72958
Summary:
Loop unroll spends a lot of time in SCEVs processing in case when a function
contains hundreds of simple 'for' loops with a quite complex arrays indexes like
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 32; ++j) {
C[j*8+i] = B[j*32+i+128] + A[i*64+128];
}
}
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 8; ++j) {
for (int k = 0; k < 32; ++k) {
D[k*64+i*8+j] = D[k*64+i*8+j] + E[i+16] * C[k*8+j+256];
}
}
}
The patch improves loop unroll speed since isLoopBackedgeGuardedByCond takes
much less time than isLoopEntryGuardedByCond in the edge case.
Reviewers: skatkov, sanjoy, mkazantsev
Reviewed By: sanjoy
Subscribers: fhahn, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72929
Summary:
A recent commit accidentally defined names like `MVE_VMAXAs8` as
instances of the multiclass `MVE_VMINA`, and vice versa. This has no
effect on the test suite, because nothing directly refers to those
instruction names (the isel patterns are generated in Tablegen using
`!cast<Instruction>(NAME)` inside a lower-level multiclass). But it
means that `llvm-mc -show-inst` was listing VMAXA as VMINA, and it
would also affect any further draft code gen patches that use those
instruction ids.
Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73034
The ACLE distinguishes between the following addressing modes for gather
loads:
* "scalar base, vector offset", and
* "vector base, scalar offset".
For the "vector base, scalar offset" case, the
`int_aarch64_sve_ld1_gather_imm` intrinsic was added in 79f2422d.
Currently, that intrinsic assumes that the scalar offset is passed as an
immediate. As a result, it does not cater for cases where scalar offset
is stored in a register.
In this patch `int_aarch64_sve_ld1_gather_imm` is extended so that all
cases are covered:
* `int_aarch64_sve_ld1_gather_imm` is renamed as
`int_aarch64_sve_ld1_gather_scalar_offset`
* new DAG combine rules are added for GLD1_IMM for scenarios where the
offset is a non-immediate scalar or an out-of-range immediate
* sve-intrinsics-gather-loads-vector-base.ll is renamed as
sve-intrinsics-gather-loads-vector-base-imm-offset.ll
* sve-intrinsics-gather-loads-vector-base-scalar-offset.ll is added to test
file for non-immediate offsets
Similar changes are made for scatter store intrinsics.
Reviewed By: sdesmalen, efriedma
Differential Revision: https://reviews.llvm.org/D71773
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.
Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov
Reviewed By: Ayal, DaniilSuchkov
Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67905
This patch uses helper function rewriteLoopExitValues that is refactored in
D72602 to rematerialise the iteration count in exit blocks, so that we can
clean-up loop update expressions inside the hardware-loops later in
ARMLowOverheadLoops, which is necessary to get actual performance gains for
tail-predicated loops.
Differential Revision: https://reviews.llvm.org/D72714