With the upcoming patch to add summary parsing support, IsAnalysis would
be true in contexts where we are not performing module summary analysis.
Rename to the more specific and approprate HaveGVs, which is essentially
what this flag is indicating.
llvm-svn: 334140
- Make eraseMetadata return whether it changed something
- Wire getMetadata for a single MDNode efficiently into the attachment
map
- Add hasMetadata, which is less weird than checking getMetadata ==
nullptr on a multimap.
Use it to simplify code.
llvm-svn: 333649
The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.
This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.
The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.
For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html
Differential Revision: https://reviews.llvm.org/D42453
llvm-svn: 327163
Not all targets support the use of absolute symbols to export
constants. In particular, ARM has a wide variety of constant encodings
that cannot currently be relocated by linkers. So instead of exporting
the constants using symbols, export them directly in the summary.
The values of the constants are left as zeroes on targets that support
symbolic exports.
This may result in more cache misses when targeting those architectures
as a result of arbitrary changes in constant values, but this seems
somewhat unavoidable for now.
Differential Revision: https://reviews.llvm.org/D37407
llvm-svn: 312967
This is required when targeting COFF, as the comdat name must match
one of the names of the symbols in the comdat.
Differential Revision: https://reviews.llvm.org/D37550
llvm-svn: 312767
We can't reuse the llvm.assume instruction's bitcast because it may not
dominate every user of the vtable pointer.
Differential Revision: https://reviews.llvm.org/D36994
llvm-svn: 311491
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
When profiling a no-op incremental link of Chromium I found that the functions
computeImportForFunction and computeDeadSymbols were consuming roughly 10% of
the profile. The goal of this change is to improve the performance of those
functions by changing the map lookups that they were previously doing into
pointer dereferences.
This is achieved by changing the ValueInfo data structure to be a pointer to
an element of the global value map owned by ModuleSummaryIndex, and changing
reference lists in the GlobalValueSummary to hold ValueInfos instead of GUIDs.
This means that a ValueInfo will take a client directly to the summary list
for a given GUID.
Differential Revision: https://reviews.llvm.org/D32471
llvm-svn: 302108
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
Pass const qualified summaries into importers and unqualified summaries into
exporters. This lets us const-qualify the summary argument to thinBackend.
Differential Revision: https://reviews.llvm.org/D31230
llvm-svn: 298534
Add a const version of the getTypeIdSummary accessor that avoids
mutating the TypeIdMap.
Differential Revision: https://reviews.llvm.org/D31226
llvm-svn: 298531
It was introduced in:
r296945
WholeProgramDevirt: Implement exporting for single-impl devirtualization.
---------------------
r296939
WholeProgramDevirt: Add any unsuccessful llvm.type.checked.load devirtualizations to the list of llvm.type.test users.
---------------------
Microsoft Visual Studio Community 2015
Version 14.0.23107.0 D14REL
Does not compile that code without additional brackets, showing multiple error like below:
WholeProgramDevirt.cpp(1216): error C2958: the left bracket '[' found at 'c:\access_softek\llvm\lib\transforms\ipo\wholeprogramdevirt.cpp(1216)' was not matched correctly
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ']' before '}'
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ';' before '}'
WholeProgramDevirt.cpp(1216): error C2059: syntax error: ']'
llvm-svn: 297451
Any unsuccessful llvm.type.checked.load devirtualizations will be translated
into uses of llvm.type.test, so we need to add the resulting llvm.type.test
intrinsics to the function summaries so that the LowerTypeTests pass will
export them.
Differential Revision: https://reviews.llvm.org/D29808
llvm-svn: 296939
This avoids creating a DILocation just to represent a line number,
since creating Metadata is expensive. Creating a DiagnosticLocation
directly is much cheaper.
llvm-svn: 295531
A future change will cause this byte offset to be inttoptr'd and then exported
via an absolute symbol. On the importing end we will expect the symbol to be
in range [0,2^32) so that it will fit into a 32-bit relocation. The problem
is that on 64-bit architectures if the offset is negative it will not be in
the correct range once we inttoptr it.
This change causes us to use a 32-bit integer so that it can be inttoptr'd
(which zero extends) into the correct range.
Differential Revision: https://reviews.llvm.org/D30016
llvm-svn: 295487
The idea is that the apply* functions will also be called when importing
devirt optimizations.
Differential Revision: https://reviews.llvm.org/D29745
llvm-svn: 295144
Group calls into constant and non-constant arguments up front, and use uint64_t
instead of ConstantInt to represent constant arguments. The goal is to allow
the information from the summary to fit naturally into this data structure in
a future change (specifically, it will be added to CallSiteInfo).
This has two side effects:
- We disallow VCP for constant integer arguments of width >64 bits.
- We remove the restriction that the bitwidth of a vcall's argument and return
types must match those of the vfunc definitions.
I don't expect either of these to matter in practice. The first case is
uncommon, and the second one will lead to UB (so we can do anything we like).
Differential Revision: https://reviews.llvm.org/D29744
llvm-svn: 295110
Make the whole thing testable by adding YAML I/O support for the WPD
summary information and adding some negative tests that exercise the
YAML support.
Differential Revision: https://reviews.llvm.org/D29782
llvm-svn: 294981