The set properties are never used, so a vector is enough. No
functionality change intended.
While there add some std::moves to SparseSolver.
llvm-svn: 333582
Turning a table lookup intrinsic into a shuffle vector instruction
can be beneficial. If the mask used for the lookup is the constant
vector {7,6,5,4,3,2,1,0}, then the back-end generates byte reverse
instructions instead.
Differential Revision: https://reviews.llvm.org/D46133
llvm-svn: 333550
loop-cleanup passes at the beginning of the loop pass pipeline, and
re-enqueue loops after even trivial unswitching.
This will allow us to much more consistently avoid simplifying code
while doing trivial unswitching. I've also added a test case that
specifically shows effective iteration using this technique.
I've unconditionally updated the new PM as that is always using the
SimpleLoopUnswitch pass, and I've made the pipeline changes for the old
PM conditional on using this new unswitch pass. I added a bunch of
comments to the loop pass pipeline in the old PM to make it more clear
what is going on when reviewing.
Hopefully this will unblock doing *partial* unswitching instead of just
full unswitching.
Differential Revision: https://reviews.llvm.org/D47408
llvm-svn: 333493
Minor replacement. LLVM_ATTRIBUTE_USED was introduced to silence
a warning but using #ifndef NDEBUG makes more sense in this case.
Reviewers: dblaikie, fhahn, hsaito
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47498
llvm-svn: 333476
be both simpler and substantially more efficient.
Rather than use a hand-rolled iteration technique that isn't quite the
same as RPO, use the pre-built RPO loop body traversal utility.
Once visiting the loop body in RPO, we can assert that we visit defs
before uses reliably. When this is the case, the only need to iterate is
when simplifying a def that is used by a PHI node along a back-edge.
With this patch, the first pass over the loop body is just a complete
simplification of every instruction across the loop body. When we
encounter a use of a simplified instruction that stems from a PHI node
in the loop body that has already been visited (due to some cyclic CFG,
potentially the loop itself, or a nested loop, or unstructured control
flow), we recall that specific PHI node for the second iteration.
Nothing else needs to be preserved from iteration to iteration.
On the second and later iterations, only instructions known to have
simplified inputs are considered, each time starting from a set of PHIs
that had simplified inputs along the backedges.
Dead instructions are collected along the way, but deleted in a batch at
the end of each iteration making the iterations themselves substantially
simpler. This uses a new batch API for recursively deleting dead
instructions.
This alsa changes the routine to visit subloops. Because simplification
is fundamentally transitive, we may need to visit the entire loop body,
including subloops, to handle knock-on simplification.
I've added a basic test file that helps demonstrate that all of these
changes work. It includes both straight-forward loops with
simplifications as well as interesting PHI-structures, CFG-structures,
and a nested loop case.
Differential Revision: https://reviews.llvm.org/D47407
llvm-svn: 333461
Summary: It was fully replaced back in 2014, and the implementation was removed 11 months ago by r306797.
Reviewers: hfinkel, chandlerc, whitequark, deadalnix
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47436
llvm-svn: 333378
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 333358
Reverting this to see if this is causing the failures of the
clang-with-thin-lto-ubuntu bot.
[IPSCCP] Use PredicateInfo to propagate facts from cmp instructions.
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 333323
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 333268
The plan had always been to move towards using this rather than so much
in-pass simplification within the loop pipeline, but we never got around
to it.... until only a couple months after it was removed due to disuse.
=/
This commit is just a pure revert of the removal. I will add tests and
do some basic cleanup in follow-up commits. Then I'll wire it into the
loop pass pipeline.
Differential Revision: https://reviews.llvm.org/D47353
llvm-svn: 333250
Summary:
In LICM, CFG could be changed in splitPredecessorsOfLoopExit(), which update
only DT and LoopInfo. Therefore, we should preserve only DT and LoopInfo specifically,
instead of all analyses that depend on the CFG (setPreservesCFG()).
This change should fix PR37323.
Reviewers: uabelho, davide, dberlin, Ka-Ka
Reviewed By: dberlin
Subscribers: mzolotukhin, bjope, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D46775
llvm-svn: 333198
The ARM/ARM64 AESE and AESD instructions have a builtin XOR as the first step in
the instruction. Therefore, if the AES key is zero and the AES data was
previously XORed, it can be combined into a single instruction.
Differential Revision: https://reviews.llvm.org/D47239
Patch by Michael Brase!
llvm-svn: 333193
Summary:
It's internal to the VPlanHCFGBuilder and should not be visible outside of its
translation unit.
Reviewers: dcaballe, fhahn
Reviewed By: fhahn
Subscribers: rengolin, bollu, tschuett, llvm-commits, rkruppe
Differential Revision: https://reviews.llvm.org/D47312
llvm-svn: 333187
Summary:
If NaryReassociate succeed it will, when replacing the old instruction
with the new instruction, also recursively delete trivially
dead instructions from the old instruction. However, if the input to the
NaryReassociate pass contain dead code it is not save to recursively
delete trivially deadinstructions as it might lead to deleting the newly
created instruction.
This patch will fix the problem by using WeakVH to detect this
rare case, when the newly created instruction is dead, and it will then
restart the basic block iteration from the beginning.
This fixes pr37539
Reviewers: tra, meheff, grosser, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47139
llvm-svn: 333155
Summary:
StructurizeCFG::orderNodes basically uses a reverse post-order (RPO) traversal of the region list to get the order.
The only problem with it is that sometimes backedges for outer loops will be visited before backedges for inner loops.
To solve this problem, a loop depth based approach has been used to make sure all blocks in this loop has been visited
before moving on to outer loop.
However, we found a problem for a SubRegion which is a loop itself:
--> BB1 --> BB2 --> BB3 -->
In this case, BB2 is a SubRegion (loop), and thus its loopdepth is different than that of BB1 and BB3. This fact will lead
BB2 to be placed in the wrong order.
In this work, we treat the SubRegion as a special case and use its exit block to determine the loop and its depth
to guard the sorting.
Reviewers:
arsenm, jlebar
Differential Revision:
https://reviews.llvm.org/D46912
llvm-svn: 333111
Summary:
Finally fixes [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]].
Now that the backend is all done, we can finally fold it!
The canonical unfolded masked merge pattern is
```(x & m) | (y & ~m)```
There is a second, equivalent variant:
```(x | ~m) & (y | m)```
Only one of them (the or-of-and's i think) is canonical.
And if the mask is not a constant, we should fold it to:
```((x ^ y) & M) ^ y```
https://rise4fun.com/Alive/ndQw
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: nicholas, RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D46814
llvm-svn: 333106
Summary: This patch adds a PDT constructor from Function and lets codes previously using a local class to do this use PostDominatorTree class directly.
Reviewers: davide, kuhar, grosser, dberlin
Reviewed By: kuhar
Author: NutshellySima
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46709
llvm-svn: 333102
Now that the LLVM_DEBUG() macro landed on the various sub-projects
the DEBUG macro can be removed.
Also change the new uses of DEBUG to LLVM_DEBUG.
Differential Revision: https://reviews.llvm.org/D46952
llvm-svn: 333091
Loop unswitching makes substantial changes to a loop that can also affect cached
SCEV info in its outer loops as well, but it only cares to invalidate SCEV cache for the
innermost loop in case of full unswitching and does not invalidate anything at all in
case of trivial unswitching. As result, we may end up with incorrect data in cache.
Differential Revision: https://reviews.llvm.org/D46045
Reviewed By: mzolotukhin
llvm-svn: 333072
Also, produce the canonical IR abs (s<0) to be more efficient.
This is the libcall equivalent of the clang builtin change from:
rL333038
Pasting from that commit message:
The stdlib functions are defined in section 7.20.6.1 of the C standard with:
"If the result cannot be represented, the behavior is undefined."
That lets us mark the negation with 'nsw' because "sub i32 0, INT_MIN" would
be UB/poison.
llvm-svn: 333042
Summary: Previous patch does not care if a value is changed between calloc and strlen. This needs to be removed from InstCombine and maybe moved to DSE later after some rework.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47218
llvm-svn: 333022
This patch fixes two bugs:
* test1: Previously assume(a >= 5) concluded that a == 5. That's only
valid for assume(a == 5)...
* test2: If operands were swapped, additional users were added to the
wrong cmp operand. This resulted in an "unsettled iteration"
assertion failure.
Patch by Nikita Popov
Differential Revision: https://reviews.llvm.org/D46974
llvm-svn: 333007
Summary:
When lowerswitch merge several cases into a new default block it's not
updating the PHI nodes accordingly. The code that update the PHI nodes
for the default edge only update the first entry and do not remove the
remaining ones, to make sure the number of entries match the number of
predecessors.
This is easily fixed by replacing the code that update the PHI node with
the already existing utility function for updating PHI nodes.
Reviewers: hans, reames, arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D47055
llvm-svn: 332960
Summary:
In LoopVersioning::addPHINodes we need to iterate over all
users for a value "Inst", and if the user is outside of the
VersionedLoop we should replace the use of "Inst" by using
the value "PN" instead.
Replacing the use of "Inst" for a user of "Inst" also means
that Inst->users() is modified. So it is not safe to do the
replace while iterating over Inst->users() as we used to do.
This patch splits the task into two steps. First we iterate
over Inst->users() to find all users that should be updated.
Those users are saved into a local data structure on the stack.
And then, in the second step, we do the actual updates. This
time iterating over the local data structure.
Reviewers: mzolotukhin, anemet
Reviewed By: mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47134
llvm-svn: 332958
We can eliminate old value if bound_ctrl = 1 and row_mask = bank_mask = 0xf.
This is alternative implementation working with the intrinsic in InstCombine.
Original review for past-ISel optimization: D46570.
Differential Revision: https://reviews.llvm.org/D46596
llvm-svn: 332956
r332654 tried to fix an unused function warning with
a void cast. This approach worked for clang and gcc
but not for MSVC. This commit replaces the void cast
with the LLVM_ATTRIBUTE_USED approach.
llvm-svn: 332910
Change matchSelectPattern to return X and -X for ABS/NABS in a well defined order. Adjust EarlyCSE to account for this. Ensure the SPF result is some kind of min/max and not abs/nabs in one place in InstCombine that made me nervous.
Prevously we returned the two operands of the compare part of the abs pattern. The RHS is always going to be a 0i, 1 or -1 constant. This isn't a very meaningful thing to return for any one. There's also some freedom in the abs pattern as to what happens when the value is equal to 0. This freedom led to early cse failing to match when different constants were used in otherwise equivalent operations. By returning the input and its negation in a defined order we can ensure an exact match. This also makes sure both patterns use the exact same subtract instruction for the negation. I believe CSE should evebntually make this happen and properly merge the nsw/nuw flags. But I'm not familiar with CSE and what order it does things in so it seemed like it might be good to really enforce that they were the same.
Differential Revision: https://reviews.llvm.org/D47037
llvm-svn: 332865
r332654 was reverted due to an unused function warning in
release build. This commit includes the same code with the
warning silenced.
Differential Revision: https://reviews.llvm.org/D44338
llvm-svn: 332860
Summary:
This patch fixes PR37526 by simplifying the newly generated LoadInst
instructions. If the pointer address is a bitcast from the pointer to
the NewType, we can just remove this extra bitcast instead of creating
the new one. This fixes the PR37526 + may speed up the whole compilation
process.
Reviewers: spatel, RKSimon, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47144
llvm-svn: 332855
We were previously using a DT in CVP through SimplifyQuery, but not requiring it in
the new pass manager. Hence it would crash if DT was not already available. This now
gets DT directly and plumbs it through to where it is used (instead of using it
through SQ).
llvm-svn: 332836
We already do this for min/max (see the blob above the diff),
so we should do the same for abs/nabs.
A sign-bit check (<s 0) is used as a predicate for other IR
transforms and it's likely the best for codegen.
This might solve the motivating cases for D47037 and D47041,
but I think those patches still make sense. We can't guarantee
this canonicalization if the icmp has more than one use.
Differential Revision: https://reviews.llvm.org/D47076
llvm-svn: 332819
In the patch rL329547, we have lifted the over-restrictive limitation on collected range
checks, allowing to work with range checks with the end of their range not being
provably non-negative. However it appeared that the non-negativity of this value was
assumed in the utility function `ClampedSubtract`. In particular, its reasoning is based
on the fact that `0 <= SINT_MAX - X`, which is not true if `X` is negative.
The function `ClampedSubtract` is only called twice, once with `X = 0` (which is OK)
and the second time with `X = IRC.getEnd()`, where we may now see the problem if
the end is actually a negative value. In this case, we may sometimes miscompile.
This patch is the conservative fix of the miscompile problem. Rather than rejecting
non-provably non-negative `getEnd()` values, we will check it for non-negativity in
runtime. For this, we use function `smax(smin(X, 0), -1) + 1` that is equal to `1` if `X`
is non-negative and is equal to 0 if `X` is negative. If we multiply `Begin, End` of safe
iteration space by this function calculated for `X = IRC.getEnd()`, we will get the original
`[Begin, End)` if `IRC.getEnd()` was non-negative (and, thus, `ClampedSubtract` worked
correctly) and the empty range `[0, 0)` in case if ` IRC.getEnd()` was negative.
So we in fact prohibit execution of the main loop if at least one of range checks was
made against a negative value (and we figured it out in runtime). It is still better than
what we have before (non-negativity had to be proved in compile time) and prevents
us from miscompile, however it is sometiles too restrictive for unsigned range checks
against a negative value (which in fact can be eliminated).
Once we re-implement `ClampedSubtract` in a way that it handles negative `X` correctly,
this limitation can be lifted, too.
Differential Revision: https://reviews.llvm.org/D46860
Reviewed By: samparker
llvm-svn: 332809
The evaluator goes through BB and creates global vars as temporary values to evaluate
results of LLVM instructions. It creates undef for alloca, however it assumes alloca
in addr space 0. If the next instruction is addrspace cast to 0, then we get an invalid
cast instruction.
This patch let the temp global var have an address space matching alloca addr space,
so that the valuation can be done.
Differential Revision: https://reviews.llvm.org/D47081
llvm-svn: 332794
Summary:
Floating point division by zero or even undef does not have undefined
behavior and may occur due to optimizations.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37523.
Reviewers: kcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47085
llvm-svn: 332761
The introduced problem is:
llvm.src/lib/Transforms/Vectorize/VPlanVerifier.cpp:29:13: error: unused function 'hasDuplicates' [-Werror,-Wunused-function]
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
^
llvm-svn: 332747
Summary:
Fix a case where FoldBranchToCommonDest() would bail out from doing CSE
when encountering a debug intrinsic. Handle that by skipping past the
debug intrinsics.
Also, as a minor refactoring, rename checkCSEInPredecessor() to
tryCSEWithPredecessor() to make it a bit more clear that the function
may remove instructions.
Reviewers: fhahn, craig.topper, dblaikie, xbolva00
Reviewed By: fhahn, xbolva00
Subscribers: vsk, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D46635
llvm-svn: 332698
1. Define Myriad-specific ASan constants.
2. Add code to generate an outer loop that checks that the address is
in DRAM range, and strip the cache bit from the address. The
former is required because Myriad has no memory protection, and it
is up to the instrumentation to range-check before using it to
index into the shadow memory.
3. Do not add an unreachable instruction after the error reporting
function; on Myriad such function may return if the run-time has
not been initialized.
4. Add a test.
Differential Revision: https://reviews.llvm.org/D46451
llvm-svn: 332692
Summary:
- Add wasm personality function
- Re-categorize the existing `isFuncletEHPersonality()` function into
two different functions: `isFuncletEHPersonality()` and
`isScopedEHPersonality(). This becomes necessary as wasm EH uses scoped
EH instructions (catchswitch, catchpad/ret, and cleanuppad/ret) but not
outlined funclets.
- Changed some callsites of `isFuncletEHPersonality()` to
`isScopedEHPersonality()` if they are related to scoped EH IR-level
stuff.
Reviewers: majnemer, dschuff, rnk
Subscribers: jfb, sbc100, jgravelle-google, eraman, JDevlieghere, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45559
llvm-svn: 332667
Patch #3 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Expected to be NFC for the current inner loop vectorization path. It
introduces the basic algorithm to build the VPlan plain CFG (single-level
CFG, no hierarchical CFG (H-CFG), yet) in the VPlan-native vectorization
path using VPInstructions. It includes:
- VPlanHCFGBuilder: Main class to build the VPlan H-CFG (plain CFG without nested regions, for now).
- VPlanVerifier: Main class with utilities to check the consistency of a H-CFG.
- VPlanBlockUtils: Main class with utilities to manipulate VPBlockBases in VPlan.
Reviewers: rengolin, fhahn, mkuper, mssimpso, a.elovikov, hfinkel, aprantl.
Differential Revision: https://reviews.llvm.org/D44338
llvm-svn: 332654
According to alive this is valid. I'm hoping to use this to make an assumption that the sign bit is zero after this sequence. The only way it wouldn't be is if the input was INT__MIN, but by preserving the flags we can make doing this to INT_MIN UB.
The nuw flags is weird because it creates such a contradiction that the original number would have to be positive meaning we could remove the select entirely, but we don't get that far.
Differential Revision: https://reviews.llvm.org/D46988
llvm-svn: 332623
entries to reach the target. Since these calls don't require type checks,
we can short-circuit them to their real targets.
Differential Revision: https://reviews.llvm.org/D46326
llvm-svn: 332610
Summary:
The verifier accepts PHI nodes with multiple entries for the
same basic block, as long as the value is the same.
As seen in PR37203, SROA did not handle such PHI nodes properly
when speculating loads over the PHI, since it inserted multiple
loads in the predecessor block and changed the PHI into having
multiple entries for the same basic block, but with different
values.
This patch teaches SROA to reuse the same speculated load for
each PHI duplicate entry in such situations.
Resolves: https://bugs.llvm.org/show_bug.cgi?id=37203
Reviewers: uabelho, chandlerc, hfinkel, bkramer, efriedma
Reviewed By: efriedma
Subscribers: dberlin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46426
llvm-svn: 332577
The current integer widening does not support rewriting partial split slices in rewriteIntegerStore (and rewriteIntegerLoad).
This patch adds explicit checks for this case in isIntegerWideningViableForSlice.
Before r322533, splitting is allowed only for the whole-alloca slice and hence the above case is implicitly rejected by another check `if (DL.getTypeStoreSize(ValueTy) > Size)` because whole-alloca slice is larger than the partition.
Differential Revision: https://reviews.llvm.org/D46750
llvm-svn: 332575
r332057 introduced distance() for ranges. Based on post-commit feedback,
this renames distance() to size(). The new size() is also only enabled
when the operation is O(1).
Differential Revision: https://reviews.llvm.org/D46976
llvm-svn: 332551
The canonicalization was restricted to shuffle masks with
a 1-to-1 mapping to the constant vector, but that disqualifies
the common splat pattern. This is part of solving PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463
llvm-svn: 332479
Summary: If file stream arg is not captured and source is fopen, we could replace IO calls by unlocked IO ("_unlocked" function variants) to gain better speed,
Reviewers: efriedma, RKSimon, spatel, sanjoy, hfinkel, majnemer, lebedev.ri, rja
Reviewed By: rja
Subscribers: rja, srhines, efriedma, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D45736
llvm-svn: 332452
So that it can be shared with other passes that may end up doing the same
thing.
Differential Revision: https://reviews.llvm.org/D45874
llvm-svn: 332450
A catchswitch must be the only non-phi instruction in its basic block;
attempting to move a retain or release into a catchswitch basic block
will result in invalid IR. Explicitly mark a CFG hazard in this case to
prevent the code motion.
Differential Revision: https://reviews.llvm.org/D46482
llvm-svn: 332430
Author: Samuel Pitoiset
Without this patch, it appears to me that we are selecting
the wrong operand when inverting conditions. In the attached
test, it will select %tmp3 instead of %tmp4. To fix it, just
use 'A' as everywhere.
This fixes a regression introduced by
"[PatternMatch] define m_Not using m_Xor and cst_pred_ty"
https://reviews.llvm.org/D46351
llvm-svn: 332403
When two interposable functions are merged, we cannot replace
uses and have to emit calls to a common internal function. However,
writeThunk() will not actually emit a thunk if the function is too
small. This leaves us in a broken state where mergeTwoFunctions
already rewired the functions, but writeThunk doesn't do anything.
This patch changes the implementation so that:
* writeThunk() does just that.
* The direct replacement of calls is moved into mergeTwoFunctions()
into the non-interposable case only.
* isThunkProfitable() is extracted and will be called for
the non-iterposable case always, and in the interposable case
only if uses are still left after replacement.
This issue has been introduced in https://reviews.llvm.org/D34806,
where the code for checking thunk profitability has been moved.
Differential Revision: https://reviews.llvm.org/D46804
Reviewed By: whitequark
llvm-svn: 332342
Summary:
Part of the InstCombine code for simplifying GEPs looks through
addrspacecasts. However, this was done by updating a variable
also used by the next transformation, for marking GEPs as
inbounds. This led to replacing a GEP with a similar instruction
in a different addrspace, which caused an assertion failure in RAUW.
This caused julia issue https://github.com/JuliaLang/julia/issues/27055
Patch by Jeff Bezanson <jeff@juliacomputing.com>
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D46722
llvm-svn: 332302
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
This is a CodeExtractor improvement which adds support for extracting blocks
which have exception handling constructs if that is legal to do. CodeExtractor
performs validation checks to ensure that extraction is legal when it finds
invoke instructions or EH pads (landingpad, catchswitch, or cleanuppad) in
blocks to be extracted.
I have also added an option to allow extraction of blocks with alloca
instructions, but no validation is done for allocas. CodeExtractor caller has
to validate it himself before allowing alloca instructions to be extracted.
By default allocas are still not allowed in extraction blocks.
Differential Revision: https://reviews.llvm.org/D45904
llvm-svn: 332151
Let separate-const-offset-from-gep pass handle trunc() when it calculates
constant offset relative to base. The pass itself may insert trunc()
instructions when it canonicalises array indices to pointer-size integers
and needs to handle trunc() in order to evaluate the offset.
Differential Revision: https://reviews.llvm.org/D46732
llvm-svn: 332142
Summary:
This change adds handling of the atomic memset intrinsic to the
code path that simplifies the regular memset. In practice this means
that we will now also expand a small constant-length atomic memset
into a single unordered atomic store.
Reviewers: apilipenko, skatkov, mkazantsev, anna, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D46660
llvm-svn: 332132
Phi nodes can reside in live blocks but one of their incoming
arguments can come from a dead block. Dead blocks and reassociate
don't play nice together. In fact, reassociate performs an RPO
as a first step to avoid processing dead blocks.
The reason why Reassociate might not fixpoint when examining
dead blocks is that the following:
%xor0 = xor i16 %xor1, undef
%xor1 = xor i16 %xor0, undef
is perfectly valid LLVM IR (if it appears in a dead block),
so the worklist algorithm keeps pushing the two instructions for
reexamination. Note that this is not Reassociate fault, at least
not entirely. It's llvm that has a weird definition of dominance.
Fixes PR37390.
llvm-svn: 332100
Summary:
This change reworks the handling of atomic memcpy within the instcombine pass.
Previously, a constant length atomic memcpy would be lowered into loads & stores
as long as no more than 16 load/store pairs are created. This is quite different
from the lowering done for a non-atomic memcpy; which only ever lowers into a single
load/store pair of no more than 8 bytes. Larger constant-sized memcpy calls are
expanded to load/stores in later passes, such as SelectionDAG lowering.
In this change the behaviour for atomic memcpy is unified with non-atomic memcpy;
atomic memcpy is now treated in the same was as non-atomic memcpy has always been.
We leave it to later passes to lower longer-length atomic memcpy calls.
Due to the structure of the pass's handling of memtransfer intrinsics, this change
also gives us handling of atomic memmove that we did not previously have.
Reviewers: apilipenko, skatkov, mkazantsev, anna, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D46658
llvm-svn: 332093
Summary:
https://bugs.llvm.org/show_bug.cgi?id=34897 demonstrates an incorrect
coroutine frame allocation elision in the coro-elide pass. The elision
is performed on the basis that the SSA variables from all llvm.coro.begin
are directly referenced in subsequent llvm.coro.destroy instructions.
However, this ignores the fact that the function may exit through paths
that do not run these destroy instructions. In the sample program from
PR34897, for example, the llvm.coro.destroy instruction is only
executed in exception handling code. When the coroutine function exits
normally, llvm.coro.destroy is not called. Eliding the allocation in
this case causes a subsequent reference to the coroutine handle from
outside of the function to access freed memory.
To fix the issue, when finding an llvm.coro.destroy for each llvm.coro.begin,
only consider llvm.coro.destroy that are executed along non-exceptional paths.
Test Plan:
1. Download the sample program from
https://bugs.llvm.org/show_bug.cgi?id=34897, compile it with
`clang++ -fcoroutines-ts -stdlib=libc++ -std=c++1z -O2`, and run it.
It should print `"run1\ncheck1\nrun2\ncheck2"` and then exit
successfully.
2. Compile https://godbolt.org/g/mCKfnr and confirm it is still
optimized to a single instruction, 'return 1190'.
3. `check-llvm`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: andrewrk, lewissbaker, EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D43242
llvm-svn: 332077
Summary:
Ship kNetBSD_ShadowOffset32 set to 1ULL << 30.
This is prepared for the amd64 kernel runtime.
Sponsored by <The NetBSD Foundation>
Reviewers: vitalybuka, joerg, kcc
Reviewed By: vitalybuka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46724
llvm-svn: 332069
We found current sampleFDO had a performance issue when triaging a regression.
For a callsite with inline instance in the profile, even if hot callsite inliner
cannot inline it, it may still execute enough times and should not be treated as
cold in regular inliner later. However, currently if such callsite is not inlined
by hot callsite inliner, and the BB where the callsite locates doesn't get
samples from other instructions inside of it, the callsite will have no profile
metadata annotated. In regular inliner cost analysis, if the callsite has no
profile annotated and its caller has profile information, it will be treated as
cold.
The fix changes the isCallsiteHot check and chooses to compare
CallsiteTotalSamples with hot cutoff value computed by ProfileSummaryInfo.
Differential Revision: https://reviews.llvm.org/D45377
llvm-svn: 332058
This commit adds a wrapper for std::distance() which works with ranges.
As it would be a common case to write `distance(predecessors(BB))`, this
also introduces `pred_size()` and `succ_size()` helpers to make that
easier to write.
Differential Revision: https://reviews.llvm.org/D46668
llvm-svn: 332057
The bitwidth of the operation should always be wider than the result width of the truncate since we don't recurse through any width changing operations.
llvm-svn: 332055
This reverts commit SVN r331889, which could trigger failed
assertions for cases where the snprintf function is declared
with a vaguely differing signature (e.g. being defined as
static inline), see PR37408.
llvm-svn: 332043
Summary:
This change teaches DSE that the atomic memory intrinsics can be overwriten
partially in the same way as the non-atomic forms. Specifically, that the
atomic memcpy & memset can be shortened at the end and that the atomic memset
can be shortened at the beginning, if they partially overwritten
by later stores.
Reviewers: mkazantsev, skatkov, apilipenko, efriedma, rsmith, spatel, filcab, sanjoy
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45584
llvm-svn: 331991
Fixes bug https://bugs.llvm.org/show_bug.cgi?id=37339.
InlineAsm is only uniqued if the FunctionTypes are exactly the
same, while cmpTypes() for example considers all pointer types
in the default address space to be the same. For this reason
the end of cmpInlineAsm() can be reached.
This patch replaces the unreachable assertion with a check that
the function types are not identical.
Differential Revision: https://reviews.llvm.org/D46495
Reviewers: jfb
llvm-svn: 331990
Put in a conservatively correct estimate for now. Avoids miscompiling
clang in FDO mode. This is really tricky to trigger in reality as
basically all interesting cases will be folded away by computeKnownBits
earlier, I was unable to find a reasonably small test case.
llvm-svn: 331975
This is a follow-up to D45986. As suggested there, we should match the "all-bits-set"
pattern in addition to "any-bits-set".
This was a little more complicated than I thought it would be initially because the
"and 1" instruction can be anywhere in the chain. Hopefully, the code comments make
that logic understandable, but if you see a way to simplify or improve that, it's
most appreciated.
This transforms patterns that emerge from bitfield tests as seen in PR37098:
https://bugs.llvm.org/show_bug.cgi?id=37098
I think it would also help reduce the large test from:
D46336
D46595
but we need something to reassociate that case to the forms we're expecting here first.
Differential Revision: https://reviews.llvm.org/D46649
llvm-svn: 331937
The previous handling for guard widening in InstCombine was extremely restrictive. In particular, it didn't handle the common case where we had two guards separated by a single icmp. Handle this by scanning through a small fixed window of instructions to find the next guard if needed.
Differential Revision: https://reviews.llvm.org/D46203
llvm-svn: 331935
This is safe as long as the udiv is not exact. The pattern is not common in
C++ code, but comes up all the time in code generated by XLA's GPU backend.
Differential Revision: https://reviews.llvm.org/D46647
llvm-svn: 331933
Summary:
MergedLoadStoreMotion::mergeStores is using some heuristics
to limit the amount of stores that it tries to sink (see
MagicCompileTimeControl in MergedLoadStoreMotion.cpp). The
heuristic involves counting the number of instructions in
one of the basic blocks that is part of the transformation.
We now ignore dbg intrinsics when counting instruction for
the MagicCompileTimeControl heuristic. This to make sure that
the amount of stores that are sunk doesn't depend on the amount
of debug information (if -g is used or not).
Reviewers: Gerolf, davide, majnemer
Reviewed By: davide
Subscribers: dberlin, bjope, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46600
llvm-svn: 331852
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
The current LowerInvoke pass cannot handle invoke instructions with a
funclet bundle operand. The order of operands for an invoke instruction
is {call arguments, callee, funclet operand (if any), normal dest,
unwind dest}. The current code assumes there is no funclet operand and
incorrectly includes a funclet operand into call arguments.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46242
llvm-svn: 331832
We enter MergeBlockIntoPredecessor with a block looking like this:
for.inc.us-lcssa: ; preds = %cond.end
%k.1.lcssa.ph = phi i32 [ %conv15, %cond.end ]
%t.3.lcssa.ph = phi i32 [ %k.1.lcssa.ph, %cond.end ]
br label %for.inc, !dbg !66
[note the first arg of the PHI being a PHI].
FoldSingleEntryPHINodes gets rid of both PHIs (calling, eraseFromParent).
But right before we call the function, we push into IncomingValues the
only argument of the PHIs, and shortly after we try to iterate over
something which has been invalidated before :(
The fix its not trying to remove PHIs which have an incoming value
coming from the same BB we're looking at.
Fixes PR37300 and rdar://problem/39910460
Differential Revision: https://reviews.llvm.org/D46568
llvm-svn: 331824
Summary:
Broadcast code generation emitted instructions in pre-header, while the instruction they are dependent on in the vector loop body.
This resulted in an IL verification error ---- value used before defined.
Reviewers: rengolin, fhahn, hfinkel
Reviewed By: rengolin, fhahn
Subscribers: dcaballe, Ka-Ka, llvm-commits
Differential Revision: https://reviews.llvm.org/D46302
llvm-svn: 331799
Summary:
In formLCSSAForInstructions we speculatively add new PHI
nodes, that sometimes ends up without having any uses. It
has been discovered that sometimes an added PHI node can
appear as being unused in one iteration of the Worklist,
although it can end up being used by a PHI node added in
a later iteration. We now check, a second time, that the
PHI node still is unused before we remove it. This avoids
an assert about "Trying to remove a phi with uses." for the
added test case.
Reviewers: davide, mzolotukhin, mattd, dberlin
Reviewed By: mzolotukhin, dberlin
Subscribers: dberlin, mzolotukhin, davide, bjope, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D46422
llvm-svn: 331741
Summary: Makes this consistent with the old PM.
Reviewers: eraman
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D46526
llvm-svn: 331709
to be needed: jump table sections are created with .cfi.jumptable suffix. With
this change each jump table is placed in a separate section, which allows the
linker to re-order them.
Differential Revision: https://reviews.llvm.org/D46537
llvm-svn: 331680
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
This was exposed by enabling expensive checks, which causes llvm::sort
to sort randomly.
Differential Revision: https://reviews.llvm.org/D45901
llvm-svn: 331573
Computing this property within the existing walk ensures that the cost is linear with the size of the block. If we did this from within isGuaranteedToExecute, it would be quadratic without some very fancy caching.
This allows us to reliably catch a hoistable instruction within a header which may throw at some point *after* our hoistable instruction. It doesn't do anything for non-header cases, but given how common single block loops are, this seems very worthwhile.
llvm-svn: 331557
A catchswitch is both a pad and a terminator, meaning it must be the
only non-phi instruction in its basic block. When we're inserting a
bitcast in the incoming basic block for a phi, if that incoming block is
a catchswitch, we should go up the dominator tree to find a valid
insertion point rather than attempting to insert before the catchswitch
(which would result in invalid IR).
Differential Revision: https://reviews.llvm.org/D46412
llvm-svn: 331548
Two of these are immediately dereferenced on the next line. The other two are passed immediately to the IRBuilder constructor which can't handle a nullptr.
llvm-svn: 331500
These are casts on users of a PHINode to Instruction. I think since PHINode is an Instruction any users would also be Instructions. At least a cast will give us an assertion if its wrong.
llvm-svn: 331498
Add logic for the special case when a cmp+select can clearly be
reduced to just a bitwise logic instruction, and remove an
over-reaching chunk of general purpose bit magic. The primary goal
is to remove cases where we are not improving the IR instruction
count when doing these select transforms, and in all cases here that
is true.
In the motivating 3-way compare tests, there are further improvements
because we can combine/propagate select values (not sure if that
belongs in instcombine, but it's there for now).
DAGCombiner has folds to turn some of these selects into bit magic,
so there should be no difference in the end result in those cases.
Not all constant combinations are handled there yet, however, so it
is possible that some targets will see more cmov/csel codegen with
this change in IR canonicalization.
Ideally, we'll go further to *not* turn selects into multiple
logic/math ops in instcombine, and we'll canonicalize to selects.
But we should make sure that this step does not result in regressions
first (and if it does, we should fix those in the backend).
The general direction for this change was discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105373.htmlhttp://lists.llvm.org/pipermail/llvm-dev/2017-July/114885.html
Alive proofs for the new bit magic:
https://rise4fun.com/Alive/XG7
Differential Revision: https://reviews.llvm.org/D46086
llvm-svn: 331486
Summary:
Prior to this change, LLVM would in some cases emit *massive* writeout
functions with many 10s of 1000s of function calls in straight-line
code. This is a very wasteful way to represent what are fundamentally
loops and creates a number of scalability issues. Among other things,
register allocating these calls is extremely expensive. While D46127 makes this
less severe, we'll still run into scaling issues with this eventually. If not
in the compile time, just from the code size.
Now the pass builds up global data structures modeling the inputs to
these functions, and simply loops over the data structures calling the
relevant functions with those values. This ensures that the code size is
a fixed and only data size grows with larger amounts of coverage data.
A trivial change to IRBuilder is included to make it easier to build
the constants that make up the global data.
Reviewers: wmi, echristo
Subscribers: sanjoy, mcrosier, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D46357
llvm-svn: 331407
Summary:
Some of our internal testing detected a major compile time regression which I've
tracked down to:
r278938 - Revert "Reassociate: Reprocess RedoInsts after each inst".
It appears that processing long chains of reassociatable instructions causes
non-linear (potentially exponential) growth in the number of times an
instruction is revisited. For example, the included test revisits instructions
220 times in a 20-instruction test.
It appears that r278938 reversed the order instructions were visited and that
this is preventing scheduled revisits from being cancelled as a result of
visiting the instructions naturally during normal processing. However, simply
reversing the order also harmed the generated code. Upon closer inspection, it
was discovered that revisits occurred in the opposite order to the first pass
(Thanks to escha for spotting that).
This patch makes the revisit order consistent with the first pass which allows
more revisits to be cancelled. This does appear to have a small impact on the
generated code in few cases but it significantly reduces compile-time.
After this patch, our internal test that was most affected by the regression
dropped from ~2 million revisits to ~4k resulting in Reassociate having 0.46%
of the runtime it had before (99.54% improvement).
Here's the summaries reported by lnt for the LLVM test-suite with --benchmarking-only:
| metric | geomean before patch | geomean after patch | delta |
| ----- | ----- | ----- | ----- |
| compile time | 0.1956 | 0.1261 | -35.54% |
| execution time | 0.3240 | 0.3237 | - |
| code size | 7365.4459 | 7365.6079 | - |
The results have a few wins and losses on compile-time, mostly in the +/- 2.5% range. There was one outlier though:
| Performance Regressions - compile_time | Δ | Previous | Current |
| MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk | 9.82% | 2.0473 | 2.2483 |
Reviewers: javed.absar, dberlin
Reviewed By: dberlin
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45734
llvm-svn: 331381
and (or (lshr X, C), ...), 1 --> (X & C') != 0
I initially thought about implementing the minimal pattern in instcombine as mentioned here:
https://bugs.llvm.org/show_bug.cgi?id=37098#c6
...but we need to do better to catch the more general sequence from the motivating test
(more than 2 bits in the compare). And a test-suite run with statistics showed that this
pattern only happened 2 times currently. It would potentially happen more often if
reassociation worked better (D45842), but it's probably still not too frequent?
This is small enough that I didn't see a need to create a whole new class/file within
AggressiveInstCombine. There are likely other relatively small matchers like what was
discussed in D44266 that would slide under foldUnusualPatterns() (name suggestions welcome).
We could potentially also consolidate matchers for ctpop, bswap, etc under here.
Differential Revision: https://reviews.llvm.org/D45986
llvm-svn: 331311
This is a follow-up to r331272.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
https://reviews.llvm.org/D46290
llvm-svn: 331275
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
This is a fix for PR23997.
The loop vectorizer is not preserving the inbounds property of GEPs that it creates.
This is inhibiting some optimizations. This patch preserves the inbounds property in
the case where a load/store is being fed by an inbounds GEP.
Reviewers: mkuper, javed.absar, hsaito
Reviewed By: hsaito
Subscribers: dcaballe, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D46191
llvm-svn: 331269
phi is on lhs of a comparison op.
For the following testcase,
L1:
%t0 = add i32 %m, 7
%t3 = icmp eq i32* %t2, null
br i1 %t3, label %L3, label %L2
L2:
%t4 = load i32, i32* %t2, align 4
br label %L3
L3:
%t5 = phi i32 [ %t0, %L1 ], [ %t4, %L2 ]
%t6 = icmp eq i32 %t0, %t5
br i1 %t6, label %L4, label %L5
We know if we go through the path L1 --> L3, %t6 should always be true. However
currently, if the rhs of the eq comparison is phi, JumpThreading fails to
evaluate %t6 to true. And we know that Instcombine cannot guarantee always
canonicalizing phi to the left hand side of the comparison operation according
to the operand priority comparison mechanism in instcombine. The patch handles
the case when rhs of the comparison op is a phi.
Differential Revision: https://reviews.llvm.org/D46275
llvm-svn: 331266
unswitch and replace it with the amazingly simple update API code.
This addresses piles of FIXMEs around the update logic here and makes
everything substantially simpler.
llvm-svn: 331247
code review.
It turns out this *is* necessary, and I read the comment on the API
correctly the first time. ;]
The `applyUpdates` routine requires that updates are "balanced". This is
in order to cleanly handle cycles like inserting, removing, nad then
re-inserting the same edge. This precludes inserting the same edge
multiple times in a row as handling that would cause the insertion logic
to become *ordered* instead of *unordered* (which is what the API
provides).
It happens that in this specific case nothing (other than an assert and
contract violation) goes wrong because we're never inserting and
removing the same edge. The implementation *happens* to do the right
thing to eliminate redundant insertions in that case.
But the requirement is there and there is an assert to catch it.
Somehow, after the code review I never did another asserts-clang build
testing loop-unswich for a long time. As a consequence, I didn't notice
this despite a bunch of testing going on, but it shows up immediately
with an asserts build of clang itself.
llvm-svn: 331246
This patch updates some code responsible the skip debug info to use
BasicBlock::instructionsWithoutDebug. I think this makes things slightly
simpler and more direct.
Reviewers: aprantl, vsk, hans, danielcdh
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D46252
llvm-svn: 331221
This patch updates some code responsible the skip debug info to use
BasicBlock::instructionsWithoutDebug. I think this makes things slightly
simpler and more direct.
Reviewers: aprantl, vsk, chandlerc
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D46253
llvm-svn: 331217
Summary:
As discussed in D45733, we want to do this in InstCombine.
https://rise4fun.com/Alive/LGk
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: chandlerc, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D45867
llvm-svn: 331205
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
This patch updates some code responsible the skip debug info to use
BasicBlock::instructionsWithoutDebug. I think this makes things
slightly simpler and more direct.
Reviewers: mkuper, rengolin, dcaballe, aprantl, vsk
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D46254
llvm-svn: 331174
Summary:
This is a follow up to D45420 (included here since it is still under review and this change is dependent on that) and D45072 (committed).
Actual change for this patch is LoopVectorize* and cmakefile. All others are all from D45420.
LoopVectorizationLegality is an analysis and thus really belongs to Analysis tree. It is modular enough and it is reusable enough ---- we can further improve those aspects once uses outside of LV picks up.
Hopefully, this will make it easier for people familiar with vectorization theory, but not necessarily LV itself to contribute, by lowering the volume of code they should deal with. We probably should start adding some code in LV to check its own capability (i.e., vectorization is legal but LV is not ready to handle it) and then bail out.
Reviewers: rengolin, fhahn, hfinkel, mkuper, aemerson, mssimpso, dcaballe, sguggill
Reviewed By: rengolin, dcaballe
Subscribers: egarcia, rogfer01, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D45552
llvm-svn: 331139
Summary:
Masked merge has a pattern of: `((x ^ y) & M) ^ y`.
But, there is no difference between `((x ^ y) & M) ^ y` and `((x ^ y) & ~M) ^ x`,
We should canonicalize the pattern to non-inverted mask.
https://rise4fun.com/Alive/Yol
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45664
llvm-svn: 331112
The effect of doing so is not disrupting the LoopPassManager when mixing this pass with other loop passes. This should help locality of access substaintially and avoids the cost of computing PostDom.
The assumption here is that the full GuardWidening (which does use PostDom) is run as a canonicalization before loop opts and that this version is just catching cases exposed by other loop passes. (i.e. LoopPredication, IndVarSimplify, LoopUnswitch, etc..)
llvm-svn: 331094
This patch adds support for fragment expressions
TryToShrinkGlobalToBoolean() which were previously just dropped.
Thanks to Reid Kleckner for providing me a reproducer!
llvm-svn: 331086
Summary:
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the `LHS` and `RHS` matchers:
1. match `RHS` matcher to the `first` operand of binary operator,
2. and then match `LHS` matcher to the `second` operand of binary operator.
This works ok.
But it complicates writing of commutative matchers, where one would like to match
(`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side.
This is additionally complicated by the fact that `m_Specific()` stores the `Value *`,
not `Value **`, so it won't work at all out of the box.
The last problem is trivially solved by adding a new `m_c_Specific()` that stores the
`Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing
one because i guess all the current users are ok with existing behavior,
and this additional pointer indirection may have performance drawbacks.
Also, i'm storing pointer, not reference, because for some mysterious-to-me reason
it did not work with the reference.
The first one appears trivial, too.
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**:
1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator,
2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator.
Surprisingly, `$ ninja check-llvm` still passes with this.
But i expect the bots will disagree..
The motivational unittest is included.
I'd like to use this in D45664.
Reviewers: spatel, craig.topper, arsenm, RKSimon
Reviewed By: craig.topper
Subscribers: xbolva00, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D45828
llvm-svn: 331085
The idea is to have a pass which performs the same transformation as GuardWidening, but can be run within a loop pass manager without disrupting the pass manager structure. As demonstrated by the test case, this doesn't quite get there because of issues with post dom, but it gives a good step in the right direction. the motivation is purely to reduce compile time since we can now preserve locality during the loop walk.
This patch only includes a legacy pass. A follow up will add a new style pass as well.
llvm-svn: 331060
We currently support LCSSA PHI nodes in the outer loop exit, if their
incoming values do not come from the outer loop latch or if the
outer loop latch has a single predecessor. In that case, the outer loop latch
will be executed only if the inner loop gets executed. If we have multiple
predecessors for the outer loop latch, it may be executed even if the inner
loop does not get executed.
This is a first step to support the case described in
https://bugs.llvm.org/show_bug.cgi?id=30472
Reviewers: efriedma, karthikthecool, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D43237
llvm-svn: 331037
It doesn't unwind, and the wrong marking leads to the creation of an
.eh_frame section when it isn't necessary.
Differential Revision: https://reviews.llvm.org/D46082
llvm-svn: 331008
Summary: If file stream arg is not captured and source is fopen, we could replace IO calls by unlocked IO ("_unlocked" function variants) to gain better speed,
Reviewers: efriedma, RKSimon, spatel, sanjoy, hfinkel, majnemer
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D45736
llvm-svn: 331002
Summary:
Simplify integer add expression X % C0 + (( X / C0 ) % C1) * C0 to
X % (C0 * C1). This is a common pattern seen in code generated by the XLA
GPU backend.
Add test cases for this new optimization.
Patch by Bixia Zheng!
Reviewers: sanjoy
Reviewed By: sanjoy
Subscribers: efriedma, craig.topper, lebedev.ri, llvm-commits, jlebar
Differential Revision: https://reviews.llvm.org/D45976
llvm-svn: 330992
Summary:
Follow-up to D43690, the EliminateAvailableExternally pass currently
runs under -O0 and -O2 and up. Under -O1 we would still want to drop
available_externally symbols to reduce space without inlining having
run.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: mehdi_amini, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D46093
llvm-svn: 330961
Summary:
When performing indirect call promotion, current implementation inspects "all" parameters of the callsite and attemps to match with the formal argument type of the callee function. However, it is not possible to find the type for variable length arguments, and the compiler crashes when it attemps to match the type for variable lenght argument.
It seems that the bug is introduced with D40658. Prior to that, the type matching is performed only for the parameters whose ID is less than callee->getFunctionNumParams(). The attached test case will crash without the patch.
Reviewers: mssimpso, davidxl, davide
Reviewed By: mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46026
llvm-svn: 330844
As discussed in D45862, we want to delete parts of
this code because it can create more instructions
than it removes. But we also want to preserve some
folds that are winners, so tidy up what's here to
make splitting the good from bad a bit easier.
llvm-svn: 330841
This also means we have to check if the latch is the exiting block now,
as `transform` expects the latches to be the exiting blocks too.
https://bugs.llvm.org/show_bug.cgi?id=36586
Reviewers: efriedma, davide, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D45279
llvm-svn: 330806
Summary:
When Reassociate is rewriting an expression tree it may
reuse old binary expression nodes, for new expressions.
Whenever an expression node is reused, but with a non-trivial
change in the result, we need to invalidate any debug info
that is associated with the node.
If for example rewriting
x = mul a, b
y = mul c, x
into
x = mul c, b
y = mul a, x
we still get the same result for 'y', but 'x' is a new expression.
All debug info referring to 'x' must be invalidated (marked as
optimized out) since we no longer calculate the expected value.
As a side-effect this patch avoid (at least some) problems where
reassociate could end up creating IR with debug-use before def.
Earlier the dbg.value nodes where left untouched in the IR, while
the reused binary nodes where sinked to just before the root node
of the rewritten expression tree. See PR27273 for more info about
such problems.
Reviewers: dblaikie, aprantl, dexonsmith
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45975
llvm-svn: 330804
Summary:
Use a MapVector instead of a DenseMap for RemMap since it is iteratated
over and the order of iteration can effect the order that new
instructions are created. This can in turn effect the use list order of
div/rem input values if multiple new instructions are created that share
any input values.
Reviewers: spatel
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D45858
llvm-svn: 330792
update API for dominators rather than doing manual, hacky updates.
This is just the first step, but in some ways the most important as it
moves the non-trivial unswitching to update the domtree rather than
fully recalculating it each time.
Subsequent patches should remove the custom update logic used by the
trivial unswitch and replace it with uses of the update API.
This also fixes a number of bugs I was seeing when testing non-trivial
unswitch due to it querying the quasi-correct dominator tree. Now the
tree is 100% correct and safe to query. That said, there are still more
bugs I can see with non-trivial unswitch just running over the test
suite, so more bugfix patches are needed as well.
Thanks to both Sanjoy and Fedor for reviews and testing!
Differential Revision: https://reviews.llvm.org/D45943
llvm-svn: 330787
Patch #2 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
This patch introduces the basic infrastructure to detect, legality check
and process outer loops annotated with hints for explicit vectorization.
All these changes are protected under the feature flag
-enable-vplan-native-path. This should make this patch NFC for the existing
inner loop vectorizer.
Reviewers: hfinkel, mkuper, rengolin, fhahn, aemerson, mssimpso.
Differential Revision: https://reviews.llvm.org/D42447
llvm-svn: 330739
After D43236, we started interchanging loops with empty dependence
matrices. In isProfitableForVectorization, we try to determine if
interchanging makes the loop dependences more friendly to the
vectorizer. If there are no dependences, we should not interchange,
based on that heuristic.
Reviewers: efriedma, mcrosier, karthikthecool, blitz.opensource
Reviewed By: mcrosier
Differential Revision: https://reviews.llvm.org/D45208
llvm-svn: 330738
The memory location an invariant load is using can never be clobbered by
any store, so it's safe to move the load ahead of the store.
Differential Revision: https://reviews.llvm.org/D46011
llvm-svn: 330725
loop unswitch.
This code incorrectly added the header to the loop block set early. As
a consequence we would incorrectly conclude that a nested loop body had
already been visited when the header of the outer loop was the preheader
of the nested loop. In retrospect, adding the header eagerly doesn't
really make sense. It seems nicer to let the cycle be formed naturally.
This will catch crazy bugs in the CFG reconstruction where we can't
correctly form the cycle earlier rather than later, and makes the rest
of the logic just fall out.
I've also added various asserts that make these issues *much* easier to
debug.
llvm-svn: 330707
This code path can very clearly be called in a context where we have
baselined all the cloned blocks to a particular loop and are trying to
handle nested subloops. There is no harm in this, so just relax the
assert. I've added a test case that will make sure we actually exercise
this code path.
llvm-svn: 330680
(notionally Scalar.h is part of libLLVMScalarOpts, so it shouldn't be
included by InstCombine which doesn't/shouldn't need to depend on
ScalarOpts)
llvm-svn: 330669
If a loop with child loops becomes our new inner loop after
interchanging, we only need to update LoopInfo for the blocks defined in
the old outer loop. BBs in child loops will stay there.
Reviewers: efriedma, karthikthecool, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D45970
llvm-svn: 330653
Summary: We do not need nonull attribute if we know an argument is going to be constant.
Reviewers: junbuml, davide, fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45608
llvm-svn: 330641
Summary:
Skip basic blocks not reachable from the entry node
in MemCpyOptPass::iterateOnFunction.
Code that is unreachable may have properties that do not exist
for reachable code (an instruction in a basic block can for
example be dominated by a later instruction in the same basic
block, for example if there is a single block loop).
MemCpyOptPass::processStore is only safe to use for reachable
basic blocks, since it may iterate past the basic block
beginning when used for unreachable blocks. By simply skipping
to optimize unreachable basic blocks we can avoid asserts such
as "Assertion `!NodePtr->isKnownSentinel()' failed."
in MemCpyOptPass::processStore.
The problem was detected by fuzz tests.
Reviewers: eli.friedman, dneilson, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D45889
llvm-svn: 330635
Summary:
This change teaches DSE that the atomic memory intrinsics are stores
that can be eliminated, and can allow other stores to be eliminated.
This change specifically does not teach DSE that these intrinsics
can be partially eliminated (i.e. length reduced, and dest/src changed);
that will be handled in another change.
Reviewers: mkazantsev, skatkov, apilipenko, efriedma, rsmith
Reviewed By: efriedma
Subscribers: dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D45535
llvm-svn: 330629
LoopRotate only invalidates innermost loops while the changes that it makes may
also affert any of this parents. With patch rL329047, SCEV becomes much smarter
about calculation of exit counts for outer loops, so we cannot assume that they are
not affected.
Differential Revision: https://reviews.llvm.org/D45945
llvm-svn: 330582
Current runtime unrolling invalidates parent loop saying that it might have changed
after the inner loop has changed, but it doesn't bother to do the same to its parents.
With patch rL329047, SCEV becomes much smarter about calculation of exit counts for
outer loops. We might need to invalidate not only the immediate parent, but also
any of its parents as well.
There is no clear evidence that there is some miscompile happening because of this
(at least I don't have such test), but the common sense says that the current code
is wrong.
Differential Revision: https://reviews.llvm.org/D45940
Reviewed By: chandlerc
llvm-svn: 330577
In the function `simplifyOneLoop` we optimistically assume that changes in the
inner loop only affect this very loop and have no impact on its parents. In fact,
after rL329047 has been merged, we can now calculate exit counts for outer
loops which may depend on inner loops. Thus, we need to invalidate all parents
when we do something to a loop.
There is an evidence of incorrect behavior of `simplifyOneLoop`: when we insert
`SE->verify()` check in the end of this funciton, it fails on a bunch of existing
test, in particular:
LLVM :: Transforms/LoopUnroll/peel-loop-not-forced.ll
LLVM :: Transforms/LoopUnroll/peel-loop-pgo.ll
LLVM :: Transforms/LoopUnroll/peel-loop.ll
LLVM :: Transforms/LoopUnroll/peel-loop2.ll
Note that previously we have fixed issues of this variety, see rL328483.
This patch makes this function invalidate the outermost loop properly.
Differential Revision: https://reviews.llvm.org/D45937
Reviewed By: chandlerc
llvm-svn: 330576
The condition this was asserting doesn't actually hold. I've added
comments to explain why, removed the assert, and added a fun test case
reduced out of 403.gcc.
llvm-svn: 330564
This is the last step in getting constant pattern matchers to allow
undef elements in constant vectors.
I'm adding a dedicated m_ZeroInt() function and building m_Zero() from
that. In most cases, calling code can be updated to use m_ZeroInt()
directly when there's no need to match pointers, but I'm leaving that
efficiency optimization as a follow-up step because it's not always
clear when that's ok.
There are just enough icmp folds in InstSimplify that can be used for
integer or pointer types, that we probably still want a generic m_Zero()
for those cases. Otherwise, we could eliminate it (and possibly add a
m_NullPtr() as an alias for isa<ConstantPointerNull>()).
We're conservatively returning a full zero vector (zeroinitializer) in
InstSimplify/InstCombine on some of these folds (see diffs in InstSimplify),
but I'm not sure if that's actually necessary in all cases. We may be
able to propagate an undef lane instead. One test where this happens is
marked with 'TODO'.
llvm-svn: 330550
When creating a call to storeStrong in ObjCARCContract, ensure the call
gets the correct funclet token, otherwise WinEHPrepare will turn the
call (and all subsequent instructions) into unreachable.
We already have logic to do this for the ARC autorelease elision marker;
factor that out into a common function that's used for both. These are
the only two places in this transform that create call instructions.
Differential Revision: https://reviews.llvm.org/D45857
llvm-svn: 330487
Summary:
Support the dynamic shadow memory offset (the default case for user
space now) and static non-zero shadow memory offset
(-hwasan-mapping-offset option). Keeping the the latter case around
for functionality and performance comparison tests (and mostly for
-hwasan-mapping-offset=0 case).
The implementation is stripped down ASan one, picking only the relevant
parts in the following assumptions: shadow scale is fixed, the shadow
memory is dynamic, it is accessed via ifunc global, shadow memory address
rematerialization is suppressed.
Keep zero-based shadow memory for kernel (-hwasan-kernel option) and
calls instreumented case (-hwasan-instrument-with-calls option), which
essentially means that the generated code is not changed in these cases.
Reviewers: eugenis
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D45840
llvm-svn: 330475
The callback used to create an ORE for the legacy PI pass caches the allocated
object in a unique_ptr in the runOnModule function, and returns a reference to
that object. Under certian circumstances we can end up holding onto that
reference after the OREs destruction. Rather then allowing the new and legacy
passes to create ORE object in diffrent ways, create the ORE at the point of
use.
Differential Revision: https://reviews.llvm.org/D43219
llvm-svn: 330473
It also adds a check making sure PHIs for operands are all in the same
block.
Patch by Daniel Berlin <dberlin@dberlin.org>
Reviewers: dberlin, davide
Differential Revision: https://reviews.llvm.org/D43865
llvm-svn: 330444
Reapply the patches with a fix. Thanks Ilya and Hans for the reproducer!
This reverts commit r330416.
The issue was that removing predecessors invalidated uses that we stored
for rewrite. The fix is to finish manipulating with CFG before we select
uses for rewrite.
llvm-svn: 330431
Revert r330413: "[SSAUpdaterBulk] Use SmallVector instead of DenseMap for storing rewrites."
Revert r330403 "Reapply "[PR16756] Use SSAUpdaterBulk in JumpThreading." one more time."
r330403 commit seems to crash clang during our integrate while doing PGO build with the following stacktrace:
#2 llvm::SSAUpdaterBulk::RewriteAllUses(llvm::DominatorTree*, llvm::SmallVectorImpl<llvm::PHINode*>*)
#3 llvm::JumpThreadingPass::ThreadEdge(llvm::BasicBlock*, llvm::SmallVectorImpl<llvm::BasicBlock*> const&, llvm::BasicBlock*)
#4 llvm::JumpThreadingPass::ProcessThreadableEdges(llvm::Value*, llvm::BasicBlock*, llvm::jumpthreading::ConstantPreference, llvm::Instruction*)
#5 llvm::JumpThreadingPass::ProcessBlock(llvm::BasicBlock*)
The crash happens while compiling 'lib/Analysis/CallGraph.cpp'.
r3340413 is reverted due to conflicting changes.
llvm-svn: 330416
Hopefully, changing set to vector removes nondeterminism detected by
some bots, or the new assert will catch something.
This reverts commit r330180.
llvm-svn: 330403
Summary:
This change fixes https://crbug.com/834474, a build failure caused by
LowerTypeTests not preserving .symver symbol versioning directives for
exported functions. Emit symver information to ThinLTO summary data and
then propagate symver directives for exported functions to the merged
module.
Emitting symver information to the summaries increases the size of
intermediate build artifacts for a Chromium build by less than 0.2%.
Reviewers: pcc
Reviewed By: pcc
Subscribers: tejohnson, mehdi_amini, eraman, llvm-commits, eugenis, kcc
Differential Revision: https://reviews.llvm.org/D45798
llvm-svn: 330387
Summary:
The following changes addresses the following two issues.
1) The existing loop rotation pass contains both loop latch simplification and loop rotation. So one flag RotationOnly is added to be passed to the loop rotation pass.
2) The threshold value is initialized with MAX_UINT since the loop rotation utility should not have threshold limit.
Reviewers: dmgreen, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D45582
llvm-svn: 330362
Summary:
This fixes the bug pointed out in review with non-trivial unswitching.
This also provides a basis that should make it pretty easy to finish
fleshing out a routine to scan an entire function body for irreducible
control flow, but this patch remains minimal for disabling loop
unswitch.
Reviewers: sanjoy, fedor.sergeev
Subscribers: mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45754
llvm-svn: 330357
If those operands change, we might find a leader for ValueOp, which
could enable new phi-of-op creation.
This fixes a case where we missed creating a phi-of-ops node. With D43865
and this patch, bootstrapping clang/llvm works with -enable-newgvn, whereas
without it, the "value changed after iteration" assertion is triggered.
Reviewers: dberlin, davide
Reviewed By: dberlin
Differential Revision: https://reviews.llvm.org/D42180
llvm-svn: 330334
After investigation discussed in D45439, it would seem that the nsw
flag restriction is unnecessary in most cases. So the IsInductionVar
lambda has been removed, the functionality extracted, and now only
require nsw when using eq/ne predicates.
Differential Revision: https://reviews.llvm.org/D45617
llvm-svn: 330256
If a predicate does not become known after peeling, peeling is unlikely
to be beneficial.
Reviewers: mcrosier, efriedma, mkazantsev, junbuml
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D44983
llvm-svn: 330250
Summary:
When sinking an instruction in InstCombine we now also sink
the DbgInfoIntrinsics that are using the sunken value.
Example)
When sinking the load in this input
bb.X:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
br label %for.body
we now also move the dbg.value, like this
bb.X:
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br label %for.body
In the past we haven't moved the dbg.value so we got
bb.X:
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
br label %for.body
So in the past we got a debug-use before the def of %0.
And that dbg.value was also on the path jumping to %for.end, for
which %0 never was defined.
CodeGenPrepare normally comes to rescue later (when not moving
the dbg.value), since it moves dbg.value instrinsics quite
brutally, without really analysing if it is correct to move
the intrinsic (see PR31878).
So at the moment this patch isn't expected to have much impact,
besides that it is moving the dbg.value already in opt, making
the IR look more sane directly.
This can be seen as a preparation to (hopefully) make it possible
to turn off CodeGenPrepare::placeDbgValues later as a solution
to PR31878.
I also adjusted test/DebugInfo/X86/sdagsplit-1.ll to make the
IR in the test case up-to-date with this behavior in InstCombine.
Reviewers: rnk, vsk, aprantl
Reviewed By: vsk, aprantl
Subscribers: mattd, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45425
llvm-svn: 330243
The bitcast may be interfering with other combines or vectorization
as shown in PR16739:
https://bugs.llvm.org/show_bug.cgi?id=16739
Most pointer-related optimizations are probably able to look through
this bitcast, but removing the bitcast shrinks the IR, so it's at
least a size savings.
Differential Revision: https://reviews.llvm.org/D44833
llvm-svn: 330237
Track the debug locations of the incoming values to newly-created phis,
and apply merged debug locations to the phis.
A merged location will be on line 0, but will have the correct scope
set. This improves crash reporting when an inlined instruction with a
merged location triggers a machine exception. A debugger will be able to
narrow down the crash to the correct inlined scope, instead of simply
pointing to the outer scope of the caller.
Taken together with a change allows generating merged line-0 locations
for instructions which aren't calls, this results in a 0.5% increase in
the uncompressed size of the .debug_line section of a stage2+Release
build of clang (-O3 -g).
rdar://33858697
Differential Revision: https://reviews.llvm.org/D45397
llvm-svn: 330227
When we skip bitcasts while looking for GEP in LoadSoreVectorizer
we should also verify that the type is sized otherwise we assert
Differential Revision: https://reviews.llvm.org/D45709
llvm-svn: 330221
One more, hopefully the last, bug is fixed: when forming UsesToRewrite
we should ignore phi operands coming from edges that we want to delete.
This reverts r329910.
llvm-svn: 330175
We use getExtractWithExtendCost to calculate the cost of extractelement and
s|zext together when computing the extract cost after vectorization, but we
calculate the cost of extractelement and s|zext separately when computing the
scalar cost which is larger than it should be.
Differential Revision: https://reviews.llvm.org/D45469
llvm-svn: 330143
Two cleanups:
1. As noted in D45453, we had tests that don't need FMF that were misplaced in the 'fast-math.ll' test file.
2. This removes the final uses of dyn_castFNegVal, so that can be deleted. We use 'match' now.
llvm-svn: 330126
Summary:
In order to get the whole fold as specified in [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]],
let's first handle the simple straight-forward things.
Let's start with the `and` -> `or` simplification.
The one obvious thing missing here: the constant mask is not handled.
I have an idea how to handle it, but it will require some thinking,
and is not strictly required here, so i've left that for later.
https://rise4fun.com/Alive/Pkmg
Reviewers: spatel, craig.topper, eli.friedman, jingyue
Reviewed By: spatel
Subscribers: llvm-commits
Was reviewed as part of https://reviews.llvm.org/D45631
llvm-svn: 330103
As suggested in https://reviews.llvm.org/D45631#1068338,
looking at haveNoCommonBitsSet() users, and *trying* to
show the change effect elsewhere.
llvm-svn: 330100
These simplifications were previously enabled only with isFast(), but that
is more restrictive than required. Since r317488, FMF has 'reassoc' to
control these cases at a finer level.
llvm-svn: 330089
As demonstrated by the regression tests added in this patch, the
following cases are valid cases:
1. A Function with no DISubprogram attached, but various debug info
related to its instructions, coming, for instance, from an inlined
function, also defined somewhere else in the same module;
2. ... or coming exclusively from the functions inlined and eliminated
from the module entirely.
The ValueMap shared between CloneFunctionInto calls within CloneModule
needs to contain identity mappings for all of the DISubprogram's to
prevent them from being duplicated by MapMetadata / RemapInstruction
calls, this is achieved via DebugInfoFinder collecting all the
DISubprogram's. However, CloneFunctionInto was missing calls into
DebugInfoFinder for functions w/o DISubprogram's attached, but still
referring DISubprogram's from within (case 1). This patch fixes that.
The fix above, however, exposes another issue: if a module contains a
DISubprogram referenced only indirectly from other debug info
metadata, but not attached to any Function defined within the module
(case 2), cloning such a module causes a DICompileUnit duplication: it
will be moved in indirecty via a DISubprogram by DebugInfoFinder first
(because of the first bug fix described above), without being
self-mapped within the shared ValueMap, and then will be copied during
named metadata cloning. So this patch makes sure DebugInfoFinder
visits DICompileUnit's referenced from DISubprogram's as it goes w/o
re-processing llvm.dbg.cu list over and over again for every function
cloned, and makes sure that CloneFunctionInto self-maps
DICompileUnit's referenced from the entire function, not just its own
DISubprogram attached that may also be missing.
The most convenient way of tesing CloneModule I found is to rely on
CloneModule call from `opt -run-twice`, instead of writing tedious
unit tests. That feature has a couple of properties that makes it hard
to use for this purpose though:
1. CloneModule doesn't copy source filename, making `opt -run-twice`
report it as a difference.
2. `opt -run-twice` does the second run on the original module, not
its clone, making the result of cloning completely invisible in opt's
actual output with and without `-run-twice` both, which directly
contradicts `opt -run-twice`s own error message.
This patch fixes this as well.
Reviewed By: aprantl
Reviewers: loladiro, GorNishanov, espindola, echristo, dexonsmith
Subscribers: vsk, debug-info, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45593
llvm-svn: 330069
The function getMinimumVF(ElemWidth) will return the minimum VF for
a vector with elements of size ElemWidth bits. This value will only
apply to targets for which TTI::shouldMaximizeVectorBandwidth returns
true. The value of 0 indicates that there is no minimum VF.
Differential Revision: https://reviews.llvm.org/D45271
llvm-svn: 330062
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: kcc, pcc, danielcdh, jmolloy, sanjoy, dberlin, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D45142
llvm-svn: 330059
Summary:
The fold added in D45108 did not account for the fact that
the and instruction is commutative, and if the mask is a variable,
the mask variable and the fold variable may be swapped.
I have noticed this by accident when looking into [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]]
This extends/generalizes that fold, so it is handled too.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45539
llvm-svn: 330001
This completes the work started in r329604 and r329605 when we changed clang to no longer use the intrinsics.
We lost some InstCombine SimplifyDemandedBit optimizations through this change as we aren't able to fold 'and', bitcast, shuffle very well.
llvm-svn: 329990