Added cuda_builtin_vars.h which implements built-in CUDA variables
using __declattr(property).
Fields of built-in variables (except for warpSize) are implemented
using __declattr(property) which replaces read/write of a member field
with a call to a getter/setter member function, in this case with
appropriate NVPTX builtin.
Added a test case to check diagnostics on attempt to construct or
improperly access a built-in variable.
Differential Revision: http://reviews.llvm.org/D9064
llvm-svn: 235448
Added cuda_builtin_vars.h which implements built-in CUDA variables
using __declattr(property).
Fields of built-in variables (except for warpSize) are implemented
using __declattr(property) which replaces read/write of a member field
with a call to a getter/setter member function, in this case with
appropriate NVPTX builtin.
Added a test case to check diagnostics on attempt to construct or
improperly access a built-in variable.
Differential Revision: http://reviews.llvm.org/D9064
llvm-svn: 235398
This should fix build-bot failures after r233804.
The patch also adds a "systemz" feature, and renames the
"transactional-execution" feature to "htm", since it turns
out "-" is not a legal character in module feature names.
llvm-svn: 233807
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
This is nearly identical to the v*f128_si256 parts of r231792 and r232052.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the front end fixes for insert/extract128 intrinsics.
Corresponding LLVM patch to follow.
llvm-svn: 232109
This is very much like D8088 (checked in at r231792).
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
Differential Revision: http://reviews.llvm.org/D8275
llvm-svn: 232052
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the LLVM half of this change:
http://reviews.llvm.org/D8086
Differential Revision: http://reviews.llvm.org/D8088
llvm-svn: 231792
Originally we were using the same GCC builtins to lower this AVX2 vector
intrinsic. Instead we will now lower it directly to a vector shuffle.
This will not only allow LLVM to generate better code, but it will also allow us
to remove the GCC intrinsics.
Reviewed by Andrea
This is related to rdar://problem/18742778.
llvm-svn: 231081
Clang has introduced ::max_align_t in stddef.h in r201729, but libc++ was
already defining std::max_align_t on Darwin because there was none in the
global namespace. After that Clang commit though, libc++ started defining
std::max_align_t to be a typedef for ::max_align_t, which has a different
definition. This changed the ABI. This commit restores the previous
definition.
rdar://19919394 rdar://18557982
llvm-svn: 230292
Use long long for the epi64 argument, like the other intrinsics.
NFC since this is only defined in 64-bit mode, not in 32-bit.
Fix suggested by H. J. Lu!
llvm-svn: 229886
Summary:
The definition for _mm256_insert_epi64 was taking an int, which would get
truncated before being inserted in the vector.
Original patch by Joshua Magee!
Reviewers: bruno, craig.topper
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D7179
llvm-svn: 229811
Also removed unused builtins.
Original patch by Andrea Di Biagio!
Reviewers: craig.topper, nadav
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D7199
llvm-svn: 228481
Analogous to AVX2, these need to be implemented as macros to properly
propagate the immediate index operand.
Part of <rdar://problem/17688758>
llvm-svn: 226496
These are implemented with __builtin_shufflevector just like AVX.
We have some tests on the LLVM side to assert that these shufflevectors do
indeed generate the corresponding unpck instruction.
Part of <rdar://problem/17688758>
llvm-svn: 225922
libunwind in all cases when installed.
At the time, Clang's unwind.h didn't provide huge chunks of the
LSB-specified unwind interface, and was generally too aenemic to use for
real software. However, it has since then become a strict superset of
the APIs provided by libunwind on Linux. Notably, you cannot compile
llgo's libgo library against libunwind, but you can against Clang's
unwind.h. So let's just use our header. =] I've checked pretty
thoroughly for any incompatibilities, and I am not aware of any.
An open question is whether or not we should continue to munge
GNU_SOURCE here. I didn't touch that as it potentially has compatibility
implications on systems I cannot easily test -- Darwin. If a Darwin
maintainer can verify that this is in fact unnecessary and remove it,
cool. Until then, leaving it in makes this change a no-op there, and
only really relevant on Linux systems where it is pretty clearly the
right way to go.
llvm-svn: 224934
necessary to be fully compatible with existing software that calls into
the linux unwind code. You can find documentation of this API and why it
exists in the discussion abot NPTL here:
https://gcc.gnu.org/ml/gcc-patches/2003-09/msg00154.html
llvm-svn: 224933
This still lower to the same intrinsics as before.
This is preparation for bounds checking the immediate on the avx version of the builtin so we don't pass illegal immediates into the backend. Since SSE uses a smaller size immediate its not possible to bounds check when using a shared builtin. Rather than creating a clang specific builtin for the different immediate, I decided (after consulting with Chandler) that it was better to match gcc.
llvm-svn: 224879