* Incorporates a reworked version of D106419 (which I have closed but has comments on it).
* Extends the standalone example to include a minimal CAPI (for registering its dialect) and a test which, from out of tree, creates an aggregate dylib and links a little sample program against it. This will likely only work today in *static* MLIR builds (until the TypeID fiasco is finally put to bed). It should work on all platforms, though (including Windows - albeit I haven't tried this exact incarnation there).
* This is the biggest pre-requisite to being able to build out of tree MLIR Python-based projects from an installed MLIR/LLVM.
* I am rather nauseated by the CMake shenanigans I had to endure to get this working. The primary complexity, above and beyond the previous patch is because (with no reason given), it is impossible to export target properties that contain generator expressions... because, of course it isn't. In this case, the primary reason we use generator expressions on the individual embedded libraries is to support arbitrary ordering. Since that need doesn't apply to out of tree (which import everything via FindPackage at the outset), we fall back to a more imperative way of doing the same thing if we detect that the target was imported. Gross, but I don't expect it to need a lot of maintenance.
* There should be a relatively straight-forward path from here to rebase libMLIR.so on top of this facility and also make it include the CAPI.
Differential Revision: https://reviews.llvm.org/D111504
This is useful for expressing specific table-gen options, like selecting
a particular dialect to print.
Use it to fix the documentation for the `pdl_interp` dialect which is now
generating the first dialect it finds in its input which is `pdl`.
Differential Revision: https://reviews.llvm.org/D100517
Implement Bug 46698, making ODS synthesize a getType() method that returns a
specific C++ class for OneResult methods where we know that class. This eliminates
a common source of casts in things like:
myOp.getType().cast<FIRRTLType>().getPassive()
because we know that myOp always returns a FIRRTLType. This also encourages
op authors to type their results more tightly (which is also good for
verification).
I chose to implement this by splitting the OneResult trait into itself plus a
OneTypedResult trait, given that many things are using `hasTrait<OneResult>`
to conditionalize various logic.
While this changes makes many many ops get more specific getType() results, it
is generally drop-in compatible with the previous behavior because 'x.cast<T>()'
is allowed when x is already known to be a T. The one exception to this is that
we need declarations of the types used by ops, which is why a couple headers
needed additional #includes.
I updated a few things in tree to remove the now-redundant `.cast<>`'s, but there
are probably many more than can be removed.
Differential Revision: https://reviews.llvm.org/D93790
This normalize the name of the tablegen file with the name of the generated
files (SideEffectInterfaces.h.inc) and the other Interface tablegen files,
which all end in Interface(s).td
Differential Revision: https://reviews.llvm.org/D79517
This adds a minimal out-of-tree dialect template which can be used to start work on a standalone dialect implementation without having to integrate it in the main LLVM tree.
It mostly sets up the directory structure and provides CMakeLists.txt files to build a dialect library, an opt-like tool to operate on that dialect as well as tests. It could be expanded in the future to add examples of more user-defined operations, types, attributes, generated enums, transforms, etc. and linked to a tutorial.
Differential Revision: https://reviews.llvm.org/D77133