distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
This is half a fix for a GDB test suite failure that expects to start at
'a' in the following code:
void func(int a)
if (a
&&
b)
...
But instead, without this change, the comparison was assigned to '&&'
(well, worse actually - because there was a chained 'a && b && c' and it
was assigned to the second '&&' because of a recursive application of
this bug) and then the load folded into the comparison so breaking on
the function started at '&&' instead of 'a'.
The other part of this needs to be fixed in LLVM where it's ignoring the
location of the icmp and instead using the location of the branch
instruction.
The fix to the conditional operator is actually a no-op currently,
because the conditional operator's location coincides with 'a' (the
start of the conditional expression) but should probably be '?' instead.
See the FIXME in the test case that mentions the ARCMigration tool
failures when I tried to make that change.
llvm-svn: 227356
This causes things like assignment to refer to the '=' rather than the
LHS when attributing the store instruction, for example.
There were essentially 3 options for this:
* The beginning of an expression (this was the behavior prior to this
commit). This meant that stepping through subexpressions would bounce
around from subexpressions back to the start of the outer expression,
etc. (eg: x + y + z would go x, y, x, z, x (the repeated 'x's would be
where the actual addition occurred)).
* The end of an expression. This seems to be what GCC does /mostly/, and
certainly this for function calls. This has the advantage that
progress is always 'forwards' (never jumping backwards - except for
independent subexpressions if they're evaluated in interesting orders,
etc). "x + y + z" would go "x y z" with the additions occurring at y
and z after the respective loads.
The problem with this is that the user would still have to think
fairly hard about precedence to realize which subexpression is being
evaluated or which operator overload is being called in, say, an asan
backtrace.
* The preferred location or 'exprloc'. In this case you get sort of what
you'd expect, though it's a bit confusing in its own way due to going
'backwards'. In this case the locations would be: "x y + z +" in
lovely postfix arithmetic order. But this does mean that if the op+
were an operator overload, say, and in a backtrace, the backtrace will
point to the exact '+' that's being called, not to the end of one of
its operands.
(actually the operator overload case doesn't work yet for other reasons,
but that's being fixed - but this at least gets scalar/complex
assignments and other plain operators right)
llvm-svn: 227027
This workaround was to provide unique call sites to ensure LLVM's inline
debug info handling would properly unique two calls to the same function
on the same line. Instead, this has now been fixed in LLVM (r226736) and
the workaround here can be removed.
Originally committed in r176895, but this isn't a straight revert due to
all the changes since then. I just searched for anything ForcedColumn*
related and removed them.
We could test this - but it didn't strike me as terribly valuable once
we're no longer adding this workaround everything just works as expected
& it's no longer a special case to test for.
llvm-svn: 226738
The code setting the debug location being removed here was accidentally
leaking a location into the call to the non-static data member's ctor
call. Without it the call had no location and could cause assertion
failures if it was inlined. Now that it has a location (and a correct
one at that) this code should hopefully be no longer needed.
It's possible of course that other parts of the debug info are also
relying on the debug locations being set here to leak to where they're
needed - so we might see the same assertions again & will have to
investigate what the dependence was/is. But the chances are good that
any of those are debug info line table quality bugs we've just not found
yet anyway - so it'll be good to flush them out.
llvm-svn: 226383
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
PR22096 has several test cases that assert that look fairly different. I'm
adding one of those as an automated test, but when relanding the other cases
should probably be checked as well.
llvm-svn: 225361
r225000 generalized debug info line info handling for expressions such
that this code is no longer necessary.
This removes the last use of CGDebugInfo::getLocation, but not all the
uses of CGDebugInfo::CurLoc, which is still used internally in
CGDebugInfo. I'd like to do away with all of that & might succeed after
a few more patches.
llvm-svn: 225085
The optimization (that appears to have been here since the earliest
implementation (r50848) & has become more complicated over the years) to
avoid recreating the debugloc if it would be the same was out of date
because ApplyDebugLocation was not re-updating the CurLoc/PrevLoc. This
optimization doesn't look terribly beneficial/necessary, so I'm removing
it - if it turns up in benchmarks, I'm happy to reconsider/reimplement
this with justification, but for now it just seems to add
complexity/problems.
llvm-svn: 225083
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
When emitting nested block definitions, the insert-at-point variant of
DIBuilder::insertDeclare() could be called with the insertion point set
to the end-of-BasicBlock sentinel, causing the parent pointer of the
CallInst to be set to the intentionally bogus value of the sentinel.
Fixed by conditionally invoking the correct version of insertDeclare().
rdar://problem/19034882
llvm-svn: 222487
Currently this function would return nothing for functions or globals that
haven't seen a definition yet. Make it return a forward declaration that will
get RAUWed with the definition if one is seen at a later point. The strategy
used to implement this is similar to what's done for types: the forward
declarations are stored in a vector and post processed upon finilization to
perform the required RAUWs.
For now the only user of getDeclarationOrDefinition() is EmitUsingDecl(), thus
this patch allows to emit correct imported declarations even in the absence of
an actual definition of the imported entity.
(Another user will be the debug info generation for argument default values
that I need to resurect).
Differential Revision: http://reviews.llvm.org/D6173
llvm-svn: 222220
Most of the debug info emission is powered essentially from function
definitions - if we emit the definition of a function, we emit the types
of its parameters, the members of those types, and so on and so forth.
For types that aren't referenced even indirectly due to this - because
they only appear in temporary expressions, not in any named variable, we
need to explicitly emit/add them as is done here. This is not the only
case of such code, and we might want to consider handling "void
func(void*); ... func(new T());" (currently debug info for T is not
emitted) at some point, though GCC doesn't. There's a much broader
solution to these issues, but it's a lot of work for possibly marginal
gain (but might help us improve the default -fno-standalone-debug
behavior to be even more aggressive in some places). See the original
review thread for more details.
Patch by jyoti allur (jyoti.yalamanchili@gmail.com)!
Differential Revision: http://reviews.llvm.org/D2498
llvm-svn: 218390
Due to the possible presence of return-by-out parameters, using the LLVM
argument number count when numbering debug info arguments can end up
off-by-one. This could produce two arguments with the same number, which
would in turn cause LLVM to emit only one of those arguments (whichever
it found last) or assert (r215157).
llvm-svn: 215227
Reverting r208106 to reapply r208065 with a fix for the regression. The
issue was that the enum tried to be built even if the declaration hadn't
been constructed for debug info - presenting problems for enum templates
and typedefs of enums with names for linkage purposes.
Original commit message:
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208114
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208065
CGDebugInfo and DIBuilder were lax in their handling of temporary
MDNodes. All temporary nodes need to be deleted, which means they need
to be RAUW'd with a permanent node. This was not happening.
To ensure this, leverage DIBuilder's new ability to create both
permanent and temporary declarations. Ensure all temporary declarations
are RAUW'd, even with itself. (DIDescriptor::RAUW handles the case where
it is replaced with itself and creates a new, duplicate permanent node
to replace itself with)
This means that all temporary declarations must be added to the
ReplacementMap even if they're never upgraded to definitions - so move
the point of insertion into the map to the point of creation of the
declarations.
llvm-svn: 208055
This takes a different approach than the
completedType/requiresCompleteType work which relies on AST callbacks to
upgrade the type declaration to a definition. Instead, just defer
constructing the definition to the end of the translation unit.
This works because the definition is never needed by other debug info
(so far as I know), whereas the definition of a struct may be needed by
other debug info before the end of the translation unit (such as
emitting the definition of a member function which must refer to that
member function's declaration).
If we had a callback for whenever an IVar was added to an ObjC interface
we could use that, and remove the need for the ObjCInterfaceCache, which
might be nice. (also would need a callback for when it was more than
just a declaration so we could get properties, etc).
A side benefit is that we also don't need the CompletedTypeCache
anymore. Just rely on the declaration-ness of a type to decide whether
its definition is yet to be emitted.
There's still the PR19562 memory leak, but this should hopefully make
that a bit easier to approach.
llvm-svn: 208015
are not associated with any source lines.
Previously, if the Location of a Decl was empty, EmitFunctionStart would
just keep using CurLoc, which would sometimes be correct (e.g., thunks)
but in other cases would just point to a hilariously random location.
This patch fixes this by completely eliminating all uses of CurLoc from
EmitFunctionStart and rather have clients explicitly pass in a
SourceLocation for the function header and the function body.
rdar://problem/14985269
llvm-svn: 205999
sure that a debugger can find them when stepping through code,
for example from the included testcase:
12 int test_it() {
13 c = 1;
14 d = 2;
-> 15 a = 4;
16 return (c == 1);
17 }
18
(lldb) p a
(int) $0 = 2
(lldb) p c
(int) $1 = 2
(lldb) p d
(int) $2 = 2
and a, c, d are all part of the file static anonymous union:
static union {
int c;
int d;
union {
int a;
};
struct {
int b;
};
};
Fixes PR19221.
llvm-svn: 205952
We already got the type alias correct (though I've included a test case
here) since Clang represents that like any other typedef - but type
alias templates weren't being handled.
llvm-svn: 205691
We should only have this optimization fire when the explicit
instantiation definition would cause at least one member function to be
emitted, thus ensuring that even a compiler not performing this
optimization would still emit the full type information elsewhere.
But we should also pessimize output still by always emitting the
definition when the explicit instantiation definition appears so that at
some point in the future we can depend on that information even when no
code had to be emitted in that TU. (this shouldn't happen very often,
since people mostly use explicit spec decl/defs to reduce code size -
but perhaps one day they could use it to explicitly reduce debug info
size too)
This was worth about 2% for Clang and LLVM - so not a huge win, but a
win. It looks really great for simple STL programs (include <string> and
just declare a string - 14k -> 1.4k of .dwo)
llvm-svn: 202769
class and use it pervasively to restore debug locations.
Fixes an interaction between cleanup and EH that caused the location
to not be restored properly after emitting a landing pad.
rdar://problem/15208190
llvm-svn: 199444
C and C++ don't emit an extra lexical scope for the compound statement
that is the body of an Objective-C method.
rdar://problem/15010825
llvm-svn: 198699