David added the JamCRC implementation in r246590. More recently, Eugene
added a CRC-32 implementation in r357901, which falls back to zlib's
crc32 function if present.
These checksums are essentially the same, so having multiple
implementations seems unnecessary. This replaces the CRC-32
implementation with the simpler one from JamCRC, and implements the
JamCRC interface in terms of CRC-32 since this means it can use zlib's
implementation when available, saving a few bytes and potentially making
it faster.
JamCRC took an ArrayRef<char> argument, and CRC-32 took a StringRef.
This patch changes it to ArrayRef<uint8_t> which I think is the best
choice, and simplifies a few of the callers nicely.
Differential revision: https://reviews.llvm.org/D68570
llvm-svn: 374148
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"
This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.
The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.
llvm-svn: 374091
Factor out CodeExtractor's analysis of allocas (for shrinkwrapping
purposes), and allow the analysis to be reused.
This resolves a quadratic compile-time bug observed when compiling
AMDGPUDisassembler.cpp.o.
Pre-patch (Release + LTO clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
176.5278 ( 57.8%) 0.4915 ( 18.5%) 177.0192 ( 57.4%) 177.4112 ( 57.3%) Hot Cold Splitting
```
Post-patch (ReleaseAsserts clang):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
1.4051 ( 3.3%) 0.0079 ( 0.3%) 1.4129 ( 3.2%) 1.4129 ( 3.2%) Hot Cold Splitting
```
Testing: check-llvm, and comparing the AMDGPUDisassembler.cpp.o binary
pre- vs. post-patch.
An alternate approach is to hide CodeExtractorAnalysisCache from clients
of CodeExtractor, and to recompute the analysis from scratch inside of
CodeExtractor::extractCodeRegion(). This eliminates some redundant work
in the shrinkwrapping legality check. However, some clients continue to
exhibit O(n^2) compile time behavior as computing the analysis is O(n).
rdar://55912966
Differential Revision: https://reviews.llvm.org/D68616
llvm-svn: 374089
Summary:
In D65186 and related patches, MustBeExecutedContextExplorer is introduced. This enables us to traverse instructions guaranteed to execute from function entry. If we can know the argument is used as `dereferenceable` or `nonnull` in these instructions, we can mark `dereferenceable` or `nonnull` in the argument definition:
1. Memory instruction (similar to D64258)
Trace memory instruction pointer operand. Currently, only inbounds GEPs are traced.
```
define i64* @f(i64* %a) {
entry:
%add.ptr = getelementptr inbounds i64, i64* %a, i64 1
; (because of inbounds GEP we can know that %a is at least dereferenceable(16))
store i64 1, i64* %add.ptr, align 8
ret i64* %add.ptr ; dereferenceable 8 (because above instruction stores into it)
}
```
2. Propagation from callsite (similar to D27855)
If `deref` or `nonnull` are known in call site parameter attributes we can also say that argument also that attribute.
```
declare void @use3(i8* %x, i8* %y, i8* %z);
declare void @use3nonnull(i8* nonnull %x, i8* nonnull %y, i8* nonnull %z);
define void @parent1(i8* %a, i8* %b, i8* %c) {
call void @use3nonnull(i8* %b, i8* %c, i8* %a)
; Above instruction is always executed so we can say that@parent1(i8* nonnnull %a, i8* nonnull %b, i8* nonnull %c)
call void @use3(i8* %c, i8* %a, i8* %b)
ret void
}
```
Reviewers: jdoerfert, sstefan1, spatel, reames
Reviewed By: jdoerfert
Subscribers: xbolva00, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65402
llvm-svn: 374063
Summary: This patch introduces a generic way to compose two structured deductions. This will be used for composing generic deduction with `MustBeExecutedExplorer` and other existing generic deduction.
Reviewers: jdoerfert, sstefan1
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66645
llvm-svn: 374060
* Adds a TypeSize struct to represent the known minimum size of a type
along with a flag to indicate that the runtime size is a integer multiple
of that size
* Converts existing size query functions from Type.h and DataLayout.h to
return a TypeSize result
* Adds convenience methods (including a transparent conversion operator
to uint64_t) so that most existing code 'just works' as if the return
values were still scalars.
* Uses the new size queries along with ElementCount to ensure that all
supported instructions used with scalable vectors can be constructed
in IR.
Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen
Reviewed By: rovka, sdesmalen
Differential Revision: https://reviews.llvm.org/D53137
llvm-svn: 374042
Summary: LoopRotate is a loop pass and SE should always be available.
Reviewers: anemet, asbirlea
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D68573
llvm-svn: 374026
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374017
The initialization logic has become part of the Attributor but the
patches that introduced these calls here were in development when the
transition happened.
We also now clean up (undefine) the macros used to create attributes.
llvm-svn: 373987
Local linkage is internal or private, and private is a specialization of
internal, so either is fine for all our "local linkage" queries.
llvm-svn: 373986
Summary:
When we iterate over uses of functions and expect them to be call sites,
we now use abstract call sites to allow callback calls.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, hfinkel, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67871
llvm-svn: 373985
This can come up in Bit Stream abstractions.
The pattern looks big/scary, but it can't be simplified any further.
It only is so simple because a number of my preparatory folds had
happened already (shift amount reassociation / shift amount
reassociation in bit test, sign bit test detection).
Highlights:
* There are two main flavors: https://rise4fun.com/Alive/zWi
The difference is add vs. sub, and left-shift of -1 vs. 1
* Since we only change the shift opcode,
we can preserve the exact-ness: https://rise4fun.com/Alive/4u4
* There can be truncation after high-bit-extraction:
https://rise4fun.com/Alive/slHc1 (the main pattern i'm after!)
Which means that we need to ignore zext of shift amounts and of NBits.
* The sign-extending magic can be extended itself (in add pattern
via sext, in sub pattern via zext. not the other way around!)
https://rise4fun.com/Alive/NhG
(or those sext/zext can be sinked into `select`!)
Which again means we should pay attention when matching NBits.
* We can have both truncation of extraction and widening of magic:
https://rise4fun.com/Alive/XTw
In other words, i don't believe we need to have any checks on
bitwidths of any of these constructs.
This is worsened in general by the fact that we may have `sext` instead
of `zext` for shift amounts, and we don't yet canonicalize to `zext`,
although we should. I have not done anything about that here.
Also, we really should have something to weed out `sub` like these,
by folding them into `add` variant.
https://bugs.llvm.org/show_bug.cgi?id=42389
llvm-svn: 373964
True, no test coverage is being added here. But those non-canonical
predicates that are already handled here already have no test coverage
as far as i can tell. I tried to add tests for them, but all the patterns
already get handled elsewhere.
llvm-svn: 373962
Summary:
Currently, we pre-check whether we need to produce a mask or not.
This involves some rather magical constants.
I'd like to extend this fold to also handle the situation
when there's also a `trunc` before outer shift.
That will require another set of magical constants.
It's ugly.
Instead, we can just compute the mask, and check
whether mask is a pass-through (all-ones) or not.
This way we don't need to have any magical numbers.
This change is NFC other than the fact that we now compute
the mask and then check if we need (and can!) apply it.
Reviewers: spatel
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68470
llvm-svn: 373961
Summary:
When we do `ConstantExpr::getZExt()`, that "extends" `undef` to `0`,
which means that for patterns a/b we'd assume that we must not produce
any bits for that channel, while in reality we simply didn't care
about that channel - i.e. we don't need to mask it.
Reviewers: spatel
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68239
llvm-svn: 373960
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
This reverts SVN r373833, as it caused a failed assert "Non-zero loop
cost expected" on building numerous projects, see PR43582 for details
and reproduction samples.
llvm-svn: 373882
I don't see an ideal solution to these 2 related, potentially large, perf regressions:
https://bugs.llvm.org/show_bug.cgi?id=42708https://bugs.llvm.org/show_bug.cgi?id=43146
We decided that load combining was unsuitable for IR because it could obscure other
optimizations in IR. So we removed the LoadCombiner pass and deferred to the backend.
Therefore, preventing SLP from destroying load combine opportunities requires that it
recognizes patterns that could be combined later, but not do the optimization itself (
it's not a vector combine anyway, so it's probably out-of-scope for SLP).
Here, we add a scalar cost model adjustment with a conservative pattern match and cost
summation for a multi-instruction sequence that can probably be reduced later.
This should prevent SLP from creating a vector reduction unless that sequence is
extremely cheap.
In the x86 tests shown (and discussed in more detail in the bug reports), SDAG combining
will produce a single instruction on these tests like:
movbe rax, qword ptr [rdi]
or:
mov rax, qword ptr [rdi]
Not some (half) vector monstrosity as we currently do using SLP:
vpmovzxbq ymm0, dword ptr [rdi + 1] # ymm0 = mem[0],zero,zero,..
vpsllvq ymm0, ymm0, ymmword ptr [rip + .LCPI0_0]
movzx eax, byte ptr [rdi]
movzx ecx, byte ptr [rdi + 5]
shl rcx, 40
movzx edx, byte ptr [rdi + 6]
shl rdx, 48
or rdx, rcx
movzx ecx, byte ptr [rdi + 7]
shl rcx, 56
or rcx, rdx
or rcx, rax
vextracti128 xmm1, ymm0, 1
vpor xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 78 # xmm1 = xmm0[2,3,0,1]
vpor xmm0, xmm0, xmm1
vmovq rax, xmm0
or rax, rcx
vzeroupper
ret
Differential Revision: https://reviews.llvm.org/D67841
llvm-svn: 373833
We do indeed already get it right in some cases, but only transitively,
with one-use restrictions. Since we only need to produce a single
comparison, it makes sense to match the pattern directly:
https://rise4fun.com/Alive/kPg
llvm-svn: 373802
Initially (D65380) i believed that if we have rightshift-trunc-rightshift,
we can't do any folding. But as it usually happens, i was wrong.
https://rise4fun.com/Alive/GEwhttps://rise4fun.com/Alive/gN2O
In https://bugs.llvm.org/show_bug.cgi?id=43564 we happen to have
this very sequence, of two right shifts separated by trunc.
And "just" so that happens, we apparently can fold the pattern
if the total shift amount is either 0, or it's equal to the bitwidth
of the innermost widest shift - i.e. if we are left with only the
original sign bit. Which is exactly what is wanted there.
llvm-svn: 373801
Without this we can encounter link errors or incorrect behaviour
at runtime as a result of the wrong function being referenced.
Differential Revision: https://reviews.llvm.org/D67945
llvm-svn: 373678
Summary: This PR creates a utility class called ValueProfileCollector that tells PGOInstrumentationGen and PGOInstrumentationUse what to value-profile and where to attach the profile metadata. It then refactors logic scattered in PGOInstrumentation.cpp into two plugins that plug into the ValueProfileCollector.
Authored By: Wael Yehia <wyehia@ca.ibm.com>
Reviewer: davidxl, tejohnson, xur
Reviewed By: davidxl, tejohnson, xur
Subscribers: llvm-commits
Tag: #llvm
Differential Revision: https://reviews.llvm.org/D67920
Patch By Wael Yehia <wyehia@ca.ibm.com>
llvm-svn: 373601
https://rise4fun.com/Alive/8BY - valid for lshr+trunc+variable sext
https://rise4fun.com/Alive/7jk - the variable sext can be redundant
https://rise4fun.com/Alive/Qslu - 'exact'-ness of first shift can be preserver
https://rise4fun.com/Alive/IF63 - without trunc we could view this as
more general "drop redundant mask before right-shift",
but let's handle it here for now
https://rise4fun.com/Alive/iip - likewise, without trunc, variable sext can be redundant.
There's more patterns for sure - e.g. we can have 'lshr' as the final shift,
but that might be best handled by some more generic transform, e.g.
"drop redundant masking before right-shift" (PR42456)
I'm singling-out this sext patch because you can only extract
high bits with `*shr` (unlike abstract bit masking),
and i *know* this fold is wanted by existing code.
I don't believe there is much to review here,
so i'm gonna opt into post-review mode here.
https://bugs.llvm.org/show_bug.cgi?id=43523
llvm-svn: 373542
bcopy is still widely used mainly for network apps. Sadly, LLVM has no optimizations for bcopy, but there are some for memmove.
Since bcopy == memmove, it is profitable to transform bcopy to memmove and use current optimizations for memmove for free here.
llvm-svn: 373537
Terminators like invoke can have users outside the current basic block.
We have to replace those users with undef, before replacing the
terminator.
This fixes a crash exposed by rL373430.
Reviewers: brzycki, asbirlea, davide, spatel
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D68327
llvm-svn: 373513
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.
Reviewers: brzycki, asbirlea, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D68297
llvm-svn: 373488
Summary:
This fixes a hole in the handling of devirtualized targets that were
local but need promoting due to devirtualization in another module. We
were not correctly referencing the promoted symbol in some cases. Make
sure the code that updates the name also looks at the ExportedGUIDs set
by utilizing a callback that checks all conditions (the callback
utilized by the internalization/promotion code).
Reviewers: pcc, davidxl, hiraditya
Subscribers: mehdi_amini, Prazek, inglorion, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68159
llvm-svn: 373485
The static analyzer is warning about a potential null dereference, but we should be able to use cast<PHINode> directly and if not assert will fire for us.
llvm-svn: 373481
removeUnreachableBlocks knows how to preserve the DomTree, so make use
of it instead of re-computing the DT.
Reviewers: davide, kuhar, brzycki
Reviewed By: davide, kuhar
Differential Revision: https://reviews.llvm.org/D68298
llvm-svn: 373430
Two small changes in llvm::removeUnreachableBlocks() to avoid unnecessary (re-)computation.
First, replace the use of count() with find(), which has better time complexity.
Second, because we have already computed the set of dead blocks, replace the second loop over all basic blocks to a loop only over the already computed dead blocks. This simplifies the loop and avoids recomputation.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: efriedma, spatel, fhahn, xbolva00
Reviewed By: fhahn, xbolva00
Differential Revision: https://reviews.llvm.org/D68191
llvm-svn: 373429
I submitted that patch after I got the LGTM, but the comments didn't
appear until after I submitted the change. This adds `const` to the
constructor argument and makes it a pointer.
llvm-svn: 373391
PR42924 points out that copying the GlobalsMetadata type during
construction of AddressSanitizer can result in exteremely lengthened
build times for translation units that have many globals. This can be addressed
by just making the GlobalsMD member in AddressSanitizer a reference to
avoid the copy. The GlobalsMetadata type is already passed to the
constructor as a reference anyway.
Differential Revision: https://reviews.llvm.org/D68287
llvm-svn: 373389