This reverts commit 44a4000181.
We are seeing build failures due to missing dependency to libSupport and
CMake Error at tools/clang/tools/clang-repl/cmake_install.cmake
file INSTALL cannot find
In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in llvm mainline.
This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:
./bin/clang-repl
clang-repl> int i = 42;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=42
clang-repl> quit
The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.
The IncrementalParser class is responsible for driving the clang parser and
codegen and allows the compiler infrastructure to process more than one input.
Every input adds to the “ever-growing” translation unit. That model is enabled
by an IncrementalAction which prevents teardown when HandleTranslationUnit.
The IncrementalExecutor class hides some of the underlying implementation
details of the concrete JIT infrastructure. It exposes the minimal set of
functionality required by our incremental compiler/interpreter.
The Transaction class keeps track of the AST and the LLVM IR for each
incremental input. That tracking information will be later used to implement
error recovery.
The Interpreter class orchestrates the IncrementalParser and the
IncrementalExecutor to model interpreter-like behavior. It provides the public
API which can be used (in future) when using the interpreter library.
Differential revision: https://reviews.llvm.org/D96033
Original commit message: "
Move the test compiler setup in a common place. NFCI
This patch reduces the copy paste in the unittest/CodeGen folder by moving the
common compiler setup phase in a header file.
Differential revision: https://reviews.llvm.org/D91061
"
This patch includes a fix for the memory leaks pointed out by @vitalybuka
This patch reduces the copy paste in the unittest/CodeGen folder by moving the
common compiler setup phase in a header file.
Differential revision: https://reviews.llvm.org/D91061
This patch is mainly doing two things:
1. Adding support for parentheses, making the combination of target features
more diverse;
2. Making the priority of ’,‘ is higher than that of '|' by default. So I need
to make some change with PTX Builtin function.
Differential Revision: https://reviews.llvm.org/D89184
On the frontend side, this patch recovers AIX static init implementation to
use the linkage type and function names Clang chooses for sinit related function.
On the backend side, this patch sets correct linkage and function names on aliases
created for sinit/sterm functions.
Differential Revision: https://reviews.llvm.org/D84534
Temporarily disable IncrementalProcessingTest partially until the static
initialization implementation on AIX is recovered.
Differential Revision: https://reviews.llvm.org/D84880
The existence of the class is more confusing than helpful, I think; the
commonality is mostly just "GEP is legal", which can be queried using
APIs on GetElementPtrInst.
Differential Revision: https://reviews.llvm.org/D75660
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This is a more thorough fix of rC348911.
The story about -DBUILD_SHARED_LIBS=on build after rC348907 (Move PCHContainerOperations from Frontend to Serialization) is:
1. libclangSerialization.so defines PCHContainerReader dtor, ...
2. clangFrontend and clangTooling define classes inheriting from PCHContainerReader, thus their DSOs have undefined references on PCHContainerReader dtor
3. Components depending on either clangFrontend or clangTooling cannot be linked unless they have explicit dependency on clangSerialization due to the default linker option -z defs. The explicit dependency could be avoided if libclang{Frontend,Tooling}.so had these undefined references.
This patch adds the explicit dependency on clangSerialization to make them build.
llvm-svn: 348915
Now tests for metadata created by clang involve compiling code snippets
placed into c/c++ source files and matching interesting patterns in the
obtained textual representation of IR. Writting such tests is a painful
process as metadata often form complex tree-like structures but textual
representation of IR contains only a pile of metadata at the module end.
This change implements IR matchers that may be used to match required
patterns in the binary IR representation. In this case the metadata
structure is not broken and creation of match patterns is easier.
The change adds unit tests for TBAA metadata generation.
Differential Revision: https://reviews.llvm.org/D41433
llvm-svn: 321360
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
This change adds a new function, CodeGen::getFieldNumber, that
enables a user of clang's code generation to get the field number
in a generated LLVM IR struct that corresponds to a particular field
in a C struct.
It is important to expose this information in Clang's code generation
interface because there is no reasonable way for users of Clang's code
generation to get this information. In particular:
LLVM struct types do not include field names.
Clang adds a non-trivial amount of logic to the code generation of LLVM IR types for structs, in particular to handle padding and bit fields.
Patch by Michael Ferguson!
Differential Revision: https://reviews.llvm.org/D38473
llvm-svn: 315392
This allows multi-module / incremental compilation environments to have unique
initializer symbols.
Patch by Axel Naumann with minor modifications by me!
llvm-svn: 311844
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"This is the way [autoconf] ends
Not with a bang but a whimper."
-T.S. Eliot
Reviewers: chandlerc, grosbach, bob.wilson, echristo
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D16472
llvm-svn: 258862
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 3.
llvm-svn: 230305
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 2.
llvm-svn: 230089
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies.
llvm-svn: 230067