* When substituting a reference to a non-type template parameter pack where the
corresponding argument is a pack expansion, transform into an expression
which contains an unexpanded parameter pack rather than into an expression
which contains a pack expansion. This causes the SubstNonTypeTemplateParmExpr
to be inside the PackExpansionExpr, rather than outside, so the expression
still looks like a pack expansion and can be deduced.
* Teach MarkUsedTemplateParameters that we can deduce a reference to a template
parameter if it's wrapped in a SubstNonTypeTemplateParmExpr (such nodes are
added during alias template substitution).
llvm-svn: 159922
expression, skip over any SubstNonTypeTemplateParmExprs which alias templates
may have inserted before checking for a DeclRefExpr referring to a non-type
template parameter declaration.
llvm-svn: 159909
-ftemplate-depth limit. There are various ways to get an infinite (or merely
huge) stack of substitutions with no intervening instantiations. This is also
consistent with gcc's behavior.
llvm-svn: 159907
which will appear in the vtable as used, not just those ones which were
declared within the class itself. Fixes an issue reported as comment#3 in
PR12763 -- we sometimes assert in codegen if we try to emit a reference to a
function declaration which we've not marked as referenced. This also matches
gcc's observed behavior.
llvm-svn: 159895
in microsoft mode. Fixes PR12701.
The code for this was already in 2 of the 3 branches of a
conditional and missing in the 3rd branch, so lift it above
the conditional.
llvm-svn: 158842
Moves the bool bail-out down a little in SemaChecking - so now
-Wnull-conversion and -Wliteral-conversion can fire when the target type is
bool.
Also improve the wording/details in the -Wliteral-conversion warning to match
the -Wconstant-conversion.
llvm-svn: 156826
candidate template ignored: substitution failed [with T = int]: no type named 'type' in 'std::enable_if<false, void>'
Instead, just say:
candidate template ignored: disabled by 'enable_if' [with T = int]
... and point at the enable_if condition which (we assume) failed.
This is applied to all cases where the user writes 'typename enable_if<...>::type' (optionally prefixed with a nested name specifier), and 'enable_if<...>' names a complete class type which does not have a member named 'type', and this results in a candidate function being ignored in a SFINAE context. Thus it catches 'std::enable_if', 'std::__1::enable_if', 'boost::enable_if' and 'llvm::enable_if'.
llvm-svn: 156463
overload candidate, and include its message in any subsequent 'candidate not
viable due to substitution failure' note we may produce.
To keep the note small (since the 'overload resolution failed' diagnostics are
often already very verbose), the text of the SFINAE diagnostic is included as
part of the text of the note, and any notes which were attached to it are
discarded.
There happened to be spare space in OverloadCandidate into which a
PartialDiagnosticAt could be squeezed, and this patch goes to lengths to avoid
unnecessary PartialDiagnostic copies, resulting in no slowdown that I could
measure. (Removal in passing of some PartialDiagnostic copies has resulted in a
slightly smaller clang binary overall.) Even on a torture test, I was unable to
measure a memory increase of above 0.2%.
llvm-svn: 156297
pretend there was no previous declaration -- that can lead us to injecting
a class template (with no access specifier) into a class scope. Instead,
just avoid the problematic checks.
llvm-svn: 155303
up an elaborated type specifier in a friend declaration, only look for type
declarations, per [basic.lookup.elab]p2. If we know that the redeclaration
lookup for a friend class template in a dependent context finds a non-template,
don't delay the diagnostic to instantiation time.
llvm-svn: 155187
specifications on member function templates of class templates and other such
nested beasties. Store the function template from which we are to instantiate
an exception specification rather than trying to deduce it. Plus some
additional test cases.
llvm-svn: 155076
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
This diagnostic seems to be production ready, it's just an oversight that it
wasn't turned on by default.
The test changes are a bit of a mixed bag. Some tests that seemed like they
clearly didn't need to use this behavior have been modified not to use it.
Others that I couldn't be sure about, I added the necessary expected-warnings
to.
It's possible the diagnostic message could be improved to make it clearer that
this warning can be suppressed by using a value that won't lose precision when
converted to the target type (but can still be a floating point literal, such
as "bool b = 1.0;").
llvm-svn: 154068
the nested-name-specifier (e.g., because it is dependent), do not
error even though we can't represent it in the AST at this point.
This is a horrible, horrible hack. The actual feature we still need to
implement (for C++98!) is covered by PR12292. However, we used to
silently accept this code, so when we recently started rejecting it we
caused some regressions (e.g., <rdar://problem/11147355>). This hack
brings us back to the passable-but-not-good state we had previously.
llvm-svn: 153752
specialization is known to be incomplete. If we're asked to try to
complete it, don't attempt to instantiate it again -- that can lead
to stack overflow, and to rejects-valids if the class being incomplete
is not an error.
llvm-svn: 153236
defined here, but not semantically, so
new struct S {};
is always ill-formed, even if there is a struct S in scope.
We also had a couple of bugs in ParseOptionalTypeSpecifier caused by it being
under-loved (due to it only being used in a few places) so merge it into
ParseDeclarationSpecifiers with a new DeclSpecContext. To avoid regressing, this
required improving ParseDeclarationSpecifiers' diagnostics in some cases. This
also required teaching ParseSpecifierQualifierList about constexpr... which
incidentally fixes an issue where we'd allow the constexpr specifier in other
bad places.
llvm-svn: 152549
early, since their values can be used in constant expressions in C++11. For
odr-use checking, the opposite change is required, since references are
odr-used whether or not they satisfy the requirements for appearing in a
constant expression.
llvm-svn: 151881
expression is referenced, defined, then referenced again, make sure we
instantiate it the second time it's referenced. This is the static data member
analogue of r150518.
llvm-svn: 150560
template is defined, and then the specialization is referenced again, don't
forget to instantiate the template on the second reference. Use the source
location of the first reference as the point of instantiation, though.
llvm-svn: 150518
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
to pretty-print such function types better, and to fix a case where we were not
instantiating templates in lexical order. In passing, move the Variadic bit from
Type's bitfields to FunctionProtoType to get the Type bitfields down to 32 bits.
Also ensure that we always substitute the return type of a function when
substituting explicitly-specified arguments, since that can cause us to bail
out with a SFINAE error before we hit a hard error in parameter substitution.
llvm-svn: 150241
iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
pointer to incomplete type from an ExtWarn to an error. We put the
ExtWarn in place as part of a workaround for Boost (PR6527), but it
(1) doesn't actually match a GCC extension and (2) has been fixed for
two years in Boost, and (3) causes us to emit code that fails badly at
run time, so it's a bad idea to keep it. Fixes PR11803.
llvm-svn: 148838
not integer constant expressions. In passing, fix the 'folding is an extension'
diagnostic to not claim we're accepting the code, since that's not true in
-pedantic-errors mode, and add this diagnostic to -Wgnu.
llvm-svn: 148209
scope, when no other indication is provided that the user intended to declare a
function rather than a variable.
Remove some false positives from the existing 'parentheses disambiguated as a
function' warning by suppressing it when the declaration is marked as 'typedef'
or 'extern'.
Add a new warning group -Wvexing-parse containing both of these warnings.
The new warning is enabled by default; despite a number of false positives (and
one bug) in clang's test-suite, I have only found genuine bugs with it when
running it over a significant quantity of real C++ code.
llvm-svn: 147599
members of class templates so that their values can be used in ICEs. This
required reverting r105465, to get such instantiated members to be included in
serialized ASTs.
llvm-svn: 147023
diagnostic message are compared. If either is a substring of the other, then
no error is given. This gives rise to an unexpected case:
// expect-error{{candidate function has different number of parameters}}
will match the following error messages from Clang:
candidate function has different number of parameters (expected 1 but has 2)
candidate function has different number of parameters
It will also match these other error messages:
candidate function
function has different number of parameters
number of parameters
This patch will change so that the verification string must be a substring of
the diagnostic message before accepting. Also, all the failing tests from this
change have been corrected. Some stats from this cleanup:
87 - removed extra spaces around verification strings
70 - wording updates to diagnostics
40 - extra leading or trailing characters (typos, unmatched parens or quotes)
35 - diagnostic level was included (error:, warning:, or note:)
18 - flag name put in the warning (-Wprotocol)
llvm-svn: 146619
Necessary to parse Microsoft ATL code.
Example:
int array[] = {
0,
__if_exists(CLASS::Type) {2, }
3
};
will declare an array of 2 or 3 elements depending on if CLASS::Type exists or not.
llvm-svn: 146447
methods) to bool. E.g.
void foo() {}
if (f) { ... // <- Warns here.
}
Only applies to non-weak functions, and does not apply if the function address
is taken explicitly with the addr-of operator.
llvm-svn: 145849
Basically typo correction will try to offer a correction instead of looking into type dependent base classes.
I found this problem while parsing Microsoft ATL code with clang.
llvm-svn: 145772
Basically we have to look into the parent *lexical* DeclContext for friend functions at class scope. That's because calling GetParent() return the namespace or file DeclContext.
This fixes all remaining cases of "Unqualified lookup into dependent bases of class templates" when parsing MFC code with clang.
llvm-svn: 145127
semantics and defaults as the corresponding g++ arguments. The historical g++
argument -ftemplate-depth-N is kept for compatibility, but modern g++ versions
no longer document that option.
Add -cc1 argument -fconstexpr-depth N to implement the corresponding
functionality.
The -ftemplate-depth=N part of this fixes PR9890.
llvm-svn: 145045
This is a little bit tricky because during default argument instantiation the CurContext points to a CXXMethodDecl but we can't use the keyword this or have an implicit member call generated.
This fixes 2 errors when parsing MFC code with clang.
llvm-svn: 144881
which they do. This avoids all of the default argument promotions that
we (1) don't want, and (2) undo during that custom type checking, and
makes sure that we don't run into trouble during template
instantiation. Fixes PR11320.
llvm-svn: 144110
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
Reinstated, now that we have the fix in r143967.
llvm-svn: 143968
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
llvm-svn: 143551
does not match any declaration in the class (or class template), be
sure to mark it as invalid. Fixes PR10924 / <rdar://problem/10119422>.
llvm-svn: 143504
that it retains source location information for the type. Aside from
general goodness (being able to walk the types described in that
information), we now have a proper representation for dependent
delegating constructors. Fixes PR10457 (for real).
llvm-svn: 143410
Microsoft __if_exists/__if_not_exists statement. Also note that we
weren't traversing DeclarationNameInfo *at all* within the
RecursiveASTVisitor, which would be rather fatal for variadic
templates.
llvm-svn: 142906
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
analysis to separate dependent names from non-dependent names. For
dependent names, we'll behave differently from Visual C++:
- For __if_exists/__if_not_exists at class scope, we'll just warn
and then ignore them.
- For __if_exists/__if_not_exists in statements, we'll treat the
inner statement as a compound statement, which we only instantiate
in templates where the dependent name (after instantiation)
exists. This behavior is different from VC++, but it's as close as
we can get without encroaching ridiculousness.
The latter part (dependent statements) is not yet implemented.
llvm-svn: 142864
be sure to consider all of the possible lookup results. We were
assert()'ing (but behaving correctly) for unresolved values. Fixes
PR11134 / <rdar://problem/10290422>.
llvm-svn: 142652
actually just has an extraneous 'template<>' header, strip off the
'template<>' header and treat it as a normal friend tag. Fixes PR10660
/ <rdar://problem/9958322>.
llvm-svn: 142587
the right namespace in C++11 mode. Teach the code to prefer the 'must be in
precisely this namespace' diagnostic whenever that's true, and fix a defect
which resulted in the -Wc++11-compat warning in C++98 mode sometimes being
omitted.
llvm-svn: 142329
part of template argument deduction is ill-formed, we mark it as
invalid and treat it as a deduction failure. If we happen to find that
specialization again, treat it as a deduction failure rather than
silently building a call to the declaration.
Fixes PR11117, a marvelous bug where deduction failed after creating
an invalid specialization, causing overload resolution to pick a
different candidate. Then we performed a similar overload resolution
later, and happily picked the invalid specialization to
call... resulting in a silent link failure.
llvm-svn: 141809
We'd also like for "C++11" or "c++11" to be used for the warning
groups, but without removing the old warning flags. Patches welcome;
I've run out of time to work on this today.
llvm-svn: 141801
and DefaultFunctionArrayLvalueConversion. To prevent
significant regression for should-this-be-a-call fixits,
and to repair some such regression from the introduction of
bound member placeholders, make those placeholder checks
try to build calls appropriately. Harden the build-a-call
logic while we're at it.
llvm-svn: 141738
We had an extension which allowed const static class members of floating-point type to have in-class initializers, 'as a C++0x extension'. However, C++0x does not allow this. The extension has been kept, and extended to all literal types in C++0x mode (with a fixit to add the 'constexpr' specifier).
llvm-svn: 140801