InstCombine didn't realize that it needs to use DataLayout to determine
how wide pointers are. This lead to assertion failures.
This fixes PR23113.
llvm-svn: 234046
Adding nullptr to all the IRBuilder stuff because it's the first thing
that fails to build when testing without the back-compat functions, so
I'll keep having to re-add these locally for each chunk of migration I
do. Might as well check them in to save me the churn. Eventually I'll
have to migrate these too, but I'm going breadth-first.
llvm-svn: 232270
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Summary: SROA generates code that isn't quite as easy to optimize and contains unusual-sized shuffles, but that code is generally correct. As discussed in D7487 the right place to clean things up is InstCombine, which will pick up the type-punning pattern and transform it into a more obvious bitcast+extractelement, while leaving the other patterns SROA encounters as-is.
Test Plan: make check
Reviewers: jvoung, chandlerc
Subscribers: llvm-commits
llvm-svn: 230560
creating a non-internal header file for the InstCombine pass.
I thought about calling this InstCombiner.h or in some way more clearly
associating it with the InstCombiner clas that it is primarily defining,
but there are several other utility interfaces defined within this for
InstCombine. If, in the course of refactoring, those end up moving
elsewhere or going away, it might make more sense to make this the
combiner's header alone.
Naturally, this is a bikeshed to a certain degree, so feel free to lobby
for a different shade of paint if this name just doesn't suit you.
llvm-svn: 226783
This patch enables transformations:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)
They allow to eliminate extra shuffles in some cases.
Differential Revision: http://reviews.llvm.org/D3525
llvm-svn: 208488
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
header files and into the cpp files.
These files will require more touches as the header files actually use
DEBUG(). Eventually, I'll have to introduce a matched #define and #undef
of DEBUG_TYPE for the header files, but that comes as step N of many to
clean all of this up.
llvm-svn: 206777
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
Sequences of insertelement/extractelements are sometimes used to build
vectorsr; this code tries to put them back together into shuffles, but
could only produce a completely uniform shuffle types (<N x T> from two
<N x T> sources).
This should allow shuffles with different numbers of elements on the
input and output sides as well.
llvm-svn: 203229
When the elements are extracted from a select on vectors
or a vector select, do the select on the extracted scalars
from the input if there is only one use.
llvm-svn: 194013
index greater than the size of the vector is invalid. The shuffle may be
shrinking the size of the vector. Fixes a crash!
Also drop the maximum recursion depth of the safety check for this
optimization to five.
llvm-svn: 183080
as the BinaryOperator, *not* in the block where the IRBuilder is currently
inserting into. Fixes a bug where scalarizePHI would create instructions
that would not dominate all uses.
llvm-svn: 182639
This reverts commit r180802
There's ongoing discussion about whether this is the right place to make
this transformation. Reverting for now while we figure it out.
llvm-svn: 180834
Always fold a shuffle-of-shuffle into a single shuffle when there's only one
input vector in the first place. Continue to be more conservative when there's
multiple inputs.
rdar://13402653
PR15866
llvm-svn: 180802
When trying to collapse sequences of insertelement/extractelement
instructions into single shuffle instructions, there is one specific
case where the Instruction Combiner wrongly updates the resulting
Mask of shuffle indexes.
The problem is in function CollectShuffleElments.
If we have a sequence of insert/extract element instructions
like the one below:
%tmp1 = extractelement <4 x float> %LHS, i32 0
%tmp2 = insertelement <4 x float> %RHS, float %tmp1, i32 1
%tmp3 = extractelement <4 x float> %RHS, i32 2
%tmp4 = insertelement <4 x float> %tmp2, float %tmp3, i32 3
Where:
. %RHS will have a mask of [4,5,6,7]
. %LHS will have a mask of [0,1,2,3]
The Mask of shuffle indexes is wrongly computed to [4,1,6,7]
instead of [4,0,6,7].
When analyzing %tmp2 in order to compute the Mask for the
resulting shuffle instruction, the algorithm forgets to update
the mask index at position 1 with the index associated to the
element extracted from %LHS by instruction %tmp1.
Patch by Andrea DiBiagio!
llvm-svn: 179291
An obfuscated splat is where the frontend poorly generates code for a splat
using several different shuffles to create the splat, i.e.,
%A = load <4 x float>* %in_ptr, align 16
%B = shufflevector <4 x float> %A, <4 x float> undef, <4 x i32> <i32 0, i32 0, i32 undef, i32 undef>
%C = shufflevector <4 x float> %B, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 4, i32 undef>
%D = shufflevector <4 x float> %C, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 2, i32 4>
llvm-svn: 166061