Fixes a false positive (radar://11152419). The current solution of
adding the info into 3 places is quite ugly. Pending a generic pointer
escapes callback.
llvm-svn: 153731
count.
This is an optimization for "retry without inlining" option. Here, if we
failed to inline a function due to reaching the basic block max count,
we are going to store this information and not try to inline it
again in the translation unit. This can be viewed as a function summary.
On sqlite, with this optimization, we are 30% faster then before and
cover 10% more basic blocks (partially because the number of times we
reach timeout is decreased by 20%).
llvm-svn: 153730
the case that the variable already exists. Partly this is just
protection against people making crazy declarations with custom
asm labels or extern "C" names that intentionally collide with
the manglings of such variables, but the main reason is that we
can actually emit a static local variable twice with the
requirement that it match up. There may be other cases with
(e.g.) the various nested functions, but the main exemplar is
with constructor variants, where we can be forced into
double-emitting the function body under certain circumstances
like (currently) the presence of virtual bases.
llvm-svn: 153723
ValueObject, and make sure that ValueObjects that
have null type names (because they have null types)
also have null qualified type names. This avoids
some potential crashes if
ValueObject::GetQualifiedTypeName tries to get the
name of their type by calling GetClangTypeImpl().
llvm-svn: 153718
property file/line rather than the @synthesize file/line. Avoids
some nasty confusing-ness with conflating the file from the scope
and the line from the original declaration.
Update a couple of testcases accordingly since I had to change
that we actually use the passed in location in EmitFunctionStart.
Fixes rdar://11026482
llvm-svn: 153714
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
section. A 'normal' string will go into the __TEXT,__const section, but this
isn't good for UTF16 strings. The __ustring section allows for coalescing, among
other niceties (such as allowing the linker to easily split up strings).
Instead of outputting the UTF16 string as a series of bytes, output it as a
series of shorts. The back-end will then nicely place the UTF16 string into the
correct section, because it's a mensch.
<rdar://problem/10655949>
llvm-svn: 153710
reference is going to message the setter, the getter, or both.
Having this info on the ObjCPropertyRefExpr node makes it easier for AST
clients (like libclang) to reason about the meaning of the property reference.
[AST/Sema]
-Use 2 bits (with a PointerIntPair) in ObjCPropertyRefExpr to record the above info
-Have ObjCPropertyOpBuilder set the info appropriately.
[libclang]
-When there is an implicit property reference (property syntax using methods)
have clang_getCursorReferenced return a cursor for the method. If the property
reference is going to result in messaging both the getter and the setter choose
to return a cursor for the setter because it is less obvious from source inspection
that the setter is getting called.
The general idea has the seal of approval by John.
rdar://11151621
llvm-svn: 153709
here but it has no other uses, then we have a problem. E.g.,
int foo (const int *x) {
char a[*x];
return 0;
}
If we assign 'a' a vreg and fast isel later on has to use the selection
DAG isel, it will want to copy the value to the vreg. However, there are
no uses, which goes counter to what selection DAG isel expects.
<rdar://problem/11134152>
llvm-svn: 153705
This pass splits basic blocks to insert constant islands, and it
doesn't recompute the live-in lists. No later passes depend on accurate
liveness information.
This fixes PR12410 where the machine code verifier was complaining.
llvm-svn: 153700
We are sometimes allocatinog from the DPair register class which
contains odd-even pairs in addition to the Q registers.
Place the Q registers first in the DPair allocation order as they can be
copied with a single instruction. The odd-even pairs should only be
allocated as a last resort.
llvm-svn: 153699
Symbol files (dSYM files on darwin) can now be specified during program execution:
(lldb) target symbols add /path/to/symfile/a.out.dSYM/Contents/Resources/DWARF/a.out
This command can be used when you have a debug session in progress and want to add symbols to get better debug info fidelity.
llvm-svn: 153693
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
llvm-svn: 153686
Line tables when using DWARF in .o files can be wrong when two entries get moved around by the compiler. This was due to incorrect logic in the line entry comparison operator.
llvm-svn: 153685