Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Now that PointerType is no longer a SequentialType, all SequentialTypes
have an associated number of elements, so we can move that information to
the base class, allowing for a number of simplifications.
Differential Revision: https://reviews.llvm.org/D27122
llvm-svn: 288464
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
Assuming the default FP env, we should not treat fdiv and frem any differently in terms of
trapping behavior than any other FP op. Ie, FP ops do not trap with the default FP env.
This matches how we treat the fdiv/frem in IR with isSafeToSpeculativelyExecute() and in
the backend after:
https://reviews.llvm.org/rL279970
llvm-svn: 279973
Vector GEP with mixed (vector and scalar) indices failed on the InstSimplify Pass when all indices are constants.
Differential revision http://reviews.llvm.org/D20149
llvm-svn: 269590
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Add a common parent class for ConstantArray, ConstantVector, and
ConstantStruct called ConstantAggregate. These are the aggregate
subclasses of Constant that take operands.
This is mainly a cleanup, adding common `isa` target and removing
duplicated code. However, it also simplifies caching which constants
point transitively at `GlobalValue` (a possible future direction).
llvm-svn: 265466
Add a common parent `ConstantData` to the constants that have no
operands. These are guaranteed to represent abstract data that is in no
way tied to a specific Module.
This is a good cleanup on its own. It also makes it simpler to disallow
RAUW (and factor away use-lists) on these constants in the future. (I
have some experimental patches that make RAUW illegal on ConstantData,
and they seem to catch a bunch of bugs...)
llvm-svn: 261464
The Use argument was used to compute the operand number for a fast
path when replacing only one operand. However we always have to go
through all the operands. So the argument number can be recomputed
locally anyway.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 260454
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.
GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16275
llvm-svn: 258145
I believe in one place we were always casting to ExtractValueConstantExpr when we were trying to choose between ExtractValueConstantExpr and InsertValueConstantExpr because of this. But since they have identical layouts this didn't cause any observable problems.
llvm-svn: 255624
The ConstantDataArray::getFP(LLVMContext &, ArrayRef<uint16_t>)
overload has had a typo in it since it was written, where it will
create a Vector instead of an Array. This obviously doesn't work at
all, but it turns out that until r254991 there weren't actually any
callers of this overload. Fix the typo and add some test coverage.
llvm-svn: 255157
Currently, vectors of halfs end up as ConstantVectors, but there isn't
a good reason they can't be ConstantDataVectors. This should save some
memory.
llvm-svn: 254991
ConstantDataArray::getImpl and ConstantDataVector::getImpl had a lot
of copy pasta in how they handled sequences of constants. Break that
out into a couple of simple functions.
llvm-svn: 254456
Terrifyingly, one of them is a mishandling of floating point vectors
in Constant::isZero(). How exactly this issue survived this long
is beyond me.
llvm-svn: 253655
The way prelink used to work was
* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.
There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
implementation is pretty broken. It talks about relocations that are
"resolved by the static linker". If they are resolved, there are none
left for the prelinker. What one needs to track is if an expression
will require only dynamic relocations that point to the same DSO.
At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)
This patch removes support for it. That is, it stops printing the
".local" sections.
llvm-svn: 253280
When working with tokens, it is often the case that one has instructions
which consume a token and produce a new token. Currently, we have no
mechanism to represent an initial token state.
Instead, we can create a notional "empty token" by inventing a new
constant which captures the semantics we would like. This new constant
is called ConstantTokenNone and is written textually as "token none".
Differential Revision: http://reviews.llvm.org/D14581
llvm-svn: 252811
Gets a bit tricky in the ValueMapper, of course - not sure if we should
just expose a list of explicit types for each Value so that the
ValueMapper can be neutral to these special cases (it's OK for things
like load, where the explicit type is the result type - but when that's
not the case, it means plumbing through another "special" type... )
llvm-svn: 245728
This is part of the work to devirtualize Value.
The old pattern was to call replaceUsesOfWithOnConstant which was overridden by
subclasses. Those could then call replaceUsesOfWithOnConstantImpl on Constant
to handle deleting the current value.
To be consistent with other parts of the code, this has been changed so that we
call the method on Constant, and that dispatches to an Impl on subclasses.
As part of this, it made sense to rename the methods to be more descriptive. The
new name is Constant::handleOperandChange, and it requires that all subclasses of
Constant implement handleOperandChangeImpl, even if they just throw an error if
they shouldn't be called.
Reviewed by Duncan Exon Smith.
llvm-svn: 240567
This reorganizes destroyConstant and destroyConstantImpl.
Now there is only destroyConstant in Constant itself, while
subclasses are required to implement destroyConstantImpl.
destroyConstantImpl no longer calls delete but is instead only
responsible for removing the constant from any maps in which it
is contained.
Reviewed by Duncan Exon Smith.
llvm-svn: 240471
We don't want anyone to access OperandList directly as its going to be removed
and computed instead. This uses getter's and setter's instead in which we
can later change the underlying implementation of OperandList.
Reviewed by Duncan Exon Smith.
llvm-svn: 239620
The raw non-instruction/constant form of this is still relying on being
able to access the pointee type from a pointer type - those will be
cleaned up later. For now, just focus on the cases where the pointee
type is easily accessible.
llvm-svn: 237958
Clang regressions were caused by more stringent assertion checking
introduced by this change. Small fix needed to clang has been committed
in r236751.
llvm-svn: 236752
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...
llvm-svn: 233604
I'm just going to migrate these in a pretty ad-hoc & incremental way -
providing the backwards compatible API for now, then locally removing
it, fixing a few callers, adding it back in and commiting those callers.
Rinse, repeat.
The assertions should ensure that if I get this wrong we'll find out
about it and not just have one giant patch to revert, recommit, revert,
recommit, etc.
llvm-svn: 232240