That allows TensorFlow Add and Div ops to use Broadcastable op trait instead of
more restrictive SameValueType op trait.
That in turn allows TensorFlow ops to be registered by defining GET_OP_LIST and
including the generated ops file. Currently, tf-raise-control-flow pass tests
are using dynamic shapes in tf.Add op and AddOp can't be registered without
supporting the dynamic shapes.
TESTED with unit tests
PiperOrigin-RevId: 232927998
* Add tf.LeakyRelu op definition + folders (well one is really canonicalizer)
* Change generated error message to use attribute description instead;
* Change the return type of F32Attr to be APFloat - internally it is already
stored as APFloat so let the caller decides if they want to convert it or
not. I could see varying opinions here though :) (did not change i32attr
similarly)
PiperOrigin-RevId: 232923358
Aggregate types where at least one dimension is zero do not fully make sense as
they cannot contain any values (their total size is zero). However, TensorFlow
and XLA support tensors with zero sizes, so we must support those too. This is
relatively safe since, unlike vectors and memrefs, we don't have first-class
element accessors for MLIR tensors.
To support sparse element attributes of vector types that have no non-zero
elements, make sure that index and value element attributes have tensor type so
that we never need to create a zero vector type internally. Note that this is
already consistent with the inline documentation of the sparse elements
attribute. Users of the sparse elements attribute should not rely on the
storage schema anyway.
PiperOrigin-RevId: 232896707
Existing IR syntax is ambiguous in type declarations in presence of zero sizes.
In particular, `0x1` in the type size can be interpreted as either a
hexadecimal literal corresponding to 1, or as two distinct decimal literals
separated by an `x` for sizes. Furthermore, the shape `<0xi32>` fails lexing
because it is expected to be an integer literal.
Fix the lexer to treat `0xi32` as an integer literal `0` followed by a bare
identifier `xi32` (look one character ahead and early return instead of
erroring out).
Disallow hexadecimal literals in type declarations and forcibly split the token
into multiple parts while parsing the type. Note that the splitting trick has
been already present to separate the element type from the preceding `x`
character.
PiperOrigin-RevId: 232880373
The current ExecutionEngine flow generates the LLVM IR from MLIR and
JIT-compiles it as is without any transformation. It thus misses the
opportunity to perform optimizations supported by LLVM or collect statistics
about the module. Modify the Orc JITter to perform transformations on the LLVM
IR. Accept an optional LLVM module transformation function when constructing
the ExecutionEngine and use it while JIT-compiling. This prevents MLIR
ExecutionEngine from depending on LLVM passes; its clients should depend on the
passes they require.
PiperOrigin-RevId: 232877060
Instead, we deduce the result type from the given attribute.
This is in preparation for generating constant ops with TableGen.
PiperOrigin-RevId: 232723467
Implement the lowering of memref allocation and deallocation standard
operations into the LLVM IR dialect. This largely follows the existing
mechanism in MLIR-to-LLVM-IR translation for the sake of compatibility.
A memref value is transformed into a memref descriptor value which holds the
pointer to the underlying data buffer and the dynamic memref sizes. The buffer
is allocated using `malloc` and freed using `free`. The lowering inserts
declarations of these functions if necessary. Memref descriptors are values of
the LLVM IR structure type wrapped into an MLIR LLVM dialect type. The pointer
to the buffer and the individual sizes are accessed using `extractvalue` and
`insertvalue` LLVM IR instructions.
PiperOrigin-RevId: 232719419
*) Adds parameter to public API of MemRefRegion::compute for passing in the slice loop bounds to compute the memref region of the loop nest slice.
*) Exposes public method MemRefRegion::getRegionSize for computing the size of the memref region in bytes.
PiperOrigin-RevId: 232706165
Previously, we were using the trait mechanism to specify that an op has variadic operands.
That led a discrepancy between how we handle ops with deterministic number of operands.
Besides, we have no way to specify the constraints and match against the variadic operands.
This CL introduced Variadic<Type> as a way to solve the above issues.
PiperOrigin-RevId: 232656104
* AffineStructures has moved to IR.
* simplifyAffineExpr/simplifyAffineMap/getFlattenedAffineExpr have moved to IR.
* makeComposedAffineApply/fullyComposeAffineMapAndOperands have moved to AffineOps.
* ComposeAffineMaps is replaced by AffineApplyOp::canonicalize and deleted.
PiperOrigin-RevId: 232586468
Motivation for this change is to remove redundant TF type attributes for
TensorFlow ops. For example, tf$T: "tfdtype$DT_FLOAT". Type attributes can be derived using the MLIR operand or result MLIR types, attribute names and their mapping. This will also allow constant folding of instructions generated within MLIR (and not imported from TensorFlow) without adding type attributes for the instruction.
Derived attributes are populated while exporting MLIR to TF GraphDef using
auto-generated populators. Populators are only available for the ops that are generated by the TableGen.
Also, fixed Operator::getNumArgs method to exclude derived attributes as they are not
part of the arguments.
TESTED with unit test
PiperOrigin-RevId: 232531561
Existing type syntax contains the following productions:
function-type ::= type-list-parens `->` type-list
type-list ::= type | type-list-parens
type ::= <..> | function-type
Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function. We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.
Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level. Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications). Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.
PiperOrigin-RevId: 232528361
In optional attribute dictionary used, among others, in the generic form of the
ops, attribute types for integers and floats are omitted. This could lead to
inconsistencies when round-tripping the IR, in particular the attributes are
created with incorrect types after parsing (integers default to i64, floats
default to f64). Provide API to emit a trailing type after the attribute for
integers and floats. Use it while printing the optional attribute dictionary.
Omitting types for i64 and f64 is a pragmatic decision that minimizes changes
in tests. We may want to reconsider in the future and always print types of
attributes in the generic form.
PiperOrigin-RevId: 232480116
*) After a private memref buffer is created for a fused loop nest, dependences on the old memref are reduced, which can open up fusion opportunities. In these cases, users of the old memref are added back to the worklist to be reconsidered for fusion.
*) Fixed a bug in fusion insertion point dependence check where the memref being privatized was being skipped from the check.
PiperOrigin-RevId: 232477853
- use getAccessMap() instead of repeating it
- fold getMemRefRegion into MemRefRegion ctor (more natural, avoid heap
allocation and unique_ptr where possible)
- change extractForInductionVars - MutableArrayRef -> ArrayRef for the
arguments. Since the method is just returning copies of 'Value *', the client
can't mutate the pointers themselves; it's fine to mutate the 'Value''s
themselves, but that doesn't mutate the pointers to those.
- change the way extractForInductionVars returns (see b/123437690)
PiperOrigin-RevId: 232359277
- with this we won't see duplicate / unused operands when getting access maps,
or when constructing FlatAffineConstraints based on such maps
- we can probably change fullyComposeAffineMapAndOperands to ensure this
TODO(b/123879896).
PiperOrigin-RevId: 232356600
The generic form may be more desirable even when there is a custom form
specified so add option to enable emitting it. This also exposes a current bug
when round tripping constant with function attribute.
PiperOrigin-RevId: 232350712
loops), (2) take into account fast memory space capacity and lower 'dmaDepth'
to fit, (3) add location information for debug info / errors
- change dma-generate pass to work on blocks of instructions (start/end
iterators) instead of 'for' loops; complete TODOs - allows DMA generation for
straightline blocks of operation instructions interspersed b/w loops
- take into account fast memory capacity: check whether memory footprint fits
in fastMemoryCapacity parameter, and recurse/lower the depth at which DMA
generation is performed until it does fit in the provided memory
- add location information to MemRefRegion; any insufficient fast memory
capacity errors or debug info w.r.t dma generation shows location information
- allow DMA generation pass to be instantiated with a fast memory capacity
option (besides command line flag)
- change getMemRefRegion to return unique_ptr's
- change getMemRefFootprintBytes to work on a 'Block' instead of 'ForInst'
- other helper methods; add postDomInstFilter option for
replaceAllMemRefUsesWith; drop forInst->walkOps, add Block::walkOps methods
Eg. output
$ mlir-opt -dma-generate -dma-fast-mem-capacity=1 /tmp/single.mlir
/tmp/single.mlir:9:13: error: Total size of all DMA buffers' for this block exceeds fast memory capacity
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
^
$ mlir-opt -debug-only=dma-generate -dma-generate -dma-fast-mem-capacity=400 /tmp/single.mlir
/tmp/single.mlir:9:13: note: 8 KiB of DMA buffers in fast memory space for this block
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
PiperOrigin-RevId: 232297044
They are essentially both modelling MLIR OpTrait; the former achieves the
purpose via introducing corresponding symbols in TableGen, while the latter
just uses plain strings.
Unify them to provide a single mechanism to avoid confusion and to better
reflect the definitions on MLIR C++ side.
Ideally we should be able to deduce lots of these traits automatically via
other bits of op definitions instead of manually specifying them; but not
for now though.
PiperOrigin-RevId: 232191401
These attribute kinds are different from the rest in the sense that their types are defined
in MLIR's type hierarchy and we can build constant op out of them.
By defining this middle-level base class, we have a unified way to test and query the type
of these attributes, which will be useful when constructing constant ops of various dialects.
This CL also added asserts to reject non-NumericAttr in constant op's build() method.
PiperOrigin-RevId: 232188178