different modules) more robust. It already handled (simple) merges of
the set of declarations attached to that identifier, so add a test
case that shows us getting two different declarations for the same
identifier (one struct, one function) from different modules, and are
able to use both of them.
llvm-svn: 138189
modules (those that no other module depends on) and performs a search
over all of the modules, visiting a new module only when all of the
modules that depend on it have already been visited. The visitor can
abort the search for all modules that a module depends on, which
allows us to minimize the number of lookups necessary when performing
a search.
Switch identifier lookup from a linear walk over the set of modules to
this module visitation operation. The behavior is the same for simple
PCH and chained PCH, but provides the proper search order for
modules. Verified with printf debugging, since we don't have enough in
place to actually test this.
llvm-svn: 138187
has already been loaded before allocating a new Module structure. If
the module has already been loaded (uniquing based on file name), then
just return the existing module rather than trying to load it again.
This allows us to load a DAG of modules. Introduce a simple test case
that forms a diamond-shaped module graph, and illustrates that a
source file importing the bottom of the diamond can see declarations
in all four of the modules that make up the diamond.
Note that this version moves the file-opening logic into the module
manager, rather than splitting it between the module manager and the
AST reader. More importantly, it properly handles the
weird-but-possibly-useful case of loading an AST file from "-".
llvm-svn: 138030
Teach ModuleManager::addModule() to check whether a particular module
has already been loaded before allocating a new Module structure. If
the module has already been loaded (uniquing based on file name), then
just return the existing module rather than trying to load it again.
This allows us to load a DAG of modules. Introduce a simple test case
that forms a diamond-shaped module graph, and illustrates that a
source file importing the bottom of the diamond can see declarations
in all four of the modules that make up the diamond.
llvm-svn: 137971
has already been loaded before allocating a new Module structure. If
the module has already been loaded (uniquing based on file name), then
just return the existing module rather than trying to load it again.
This allows us to load a DAG of modules. Introduce a simple test case
that forms a diamond-shaped module graph, and illustrates that a
source file importing the bottom of the diamond can see declarations
in all four of the modules that make up the diamond.
llvm-svn: 137925
-import-module) vs. loaded because some other module depends on
them. As part of doing this, pass down the module that caused a module
to be loaded directly, rather than assuming that we're loading a
chain. Finally, write out all of the directly-loaded modules when
serializing an AST file (using the new IMPORTS record), so that an AST
file can depend on more than one other AST file, all of which will be
loaded when that AST file is loaded. This allows us to form and load a
tree of modules, but we can't yet load a DAG of modules.
llvm-svn: 137923
all AST files have a normal METADATA record that has the same form
regardless of whether we refer to a chained PCH or any other kind of
AST file.
Introduce the IMPORTS record, which describes all of the AST files
that are imported by this AST file, and how (as a module, a PCH file,
etc.). Currently, we emit at most one entry to this record, to support
chained PCH.
llvm-svn: 137869
type over into the AST context, then make that declaration a
predefined declaration in the AST format. This ensures that different
AST files will at least agree on the (global) declaration ID for 'id',
and eliminates one of the "special" types in the AST file format.
llvm-svn: 137429
declaration that never actually gets serialized. Instead, serialize
the various kinds of update records (lexical decls, visible decls, the
addition of an anonymous namespace) for the translation unit, even if
we're not chaining. This way, we won't have to deal with multiple
loaded translation unit declarations.
llvm-svn: 137395
either "special" type has already been initialized. Previously, we did
this check based on just the first special type (__builtin_va_list),
but now we have some NULL special type entries to content with.
llvm-svn: 137373
enumerations from the ASTContext into CodeGen, so that we don't need
to serialize it to AST files. This appears to be the last of the
low-hanging fruit for SpecialTypes.
llvm-svn: 137124
layout of a constant NSString from the ASTContext over to CodeGen,
since this is solely CodeGen's responsibility. Eliminates one of the
unnecessary "special" types that we serialize.
llvm-svn: 137121
the last of the ID/offset/index mappings that I know
of. Unfortunately, the "gap" method of testing doesn't work here due
to the way the preprocessing record performs iteration. We'll do more
testing once multi-AST loading is possible.
llvm-svn: 136902
IDs will never cross module boundaries, since they're tied to the
CXXDefinitionData, so just use a local mapping throughout. Eliminate
the global -> local tables and supporting data.
llvm-svn: 136847
AST file, along with an enumeration naming those predefined
declarations. No functionality change, but this will make it easier to
introduce new predefined declarations, when/if we need them.
llvm-svn: 136781
reader, to allow AST files to be loaded with their declarations
remapped to different ID numbers. Fix a number of places where we were
either failing to map local declaration IDs into global declaration
IDs or where interpreting the local declaration IDs within the wrong
module.
I've tested this via the usual "random gaps" method. It works well
except for the preamble tests, because our handling of the precompiled
preamble requires declaration and preprocessed entity to be stable
when parsing code and then loading that back into memory. This
property will hold in general, but my randomized testing naturally
breaks this property to get more coverage. In the future, I expect
that the precompiled preamble logic won't need this property.
I am very unhappy with the current handling of the translation unit,
which is a rather egregious hack. We're going to have to do something
very different here for loading multiple AST files, because we don't
want to have to cope with merging two translation units. Likely, we'll
just handle translation units entirely via "update" records, and
predefine a single, fixed declaration ID for the translation
unit. That will come later.
llvm-svn: 136779
by eliminating the type ID from constructor, destructor, and
conversion function names. There are several reasons for this change:
- A given type (say, int*) isn't guaranteed to have a single, unique
type ID within a chain of PCH files. Hence, we could end up hashing
based on the wrong type ID, causing name lookup to fail.
- The mapping from types back to type IDs required one DenseMap
entry for every type that was ever deserialized, which was an
unacceptable cost to support just the name lookup of constructors,
destructors, and conversion functions. Plus, this mapping could
never actually work with chained or multiple PCH, based on the first
bullet.
Once we have eliminated the type from the hash function, these
problems go away, as does my horrible "reverse type remap" hack, which
was doomed from the start (see bullet #1 above) and far too
complicated.
However, note that removing the type from the hash function means that
all constructors, destructors, and conversion functions have the same
hash key, so I've updated the caller to double-check that the
declarations found have the appropriate name.
llvm-svn: 136708
reader. This scheme permits an AST file to be loaded with its type IDs
shifted anywhere in the type ID space.
At present, the type indices are still allocated in the same boring
way they always have been, just by adding up the number of types in
each PCH file within the chain. However, I've done testing with this
patch by randomly sliding the base indices at load time, to ensure
that remapping is occurring as expected. I may eventually formalize
this in some testing flag, but loading multiple (non-chained) AST
files at once will eventually exercise the same code.
There is one known problem with this patch, which involves name lookup
of operator names (e.g., "x.operator int*()") in cases where multiple
PCH files in the chain. The hash function itself depends on having a
stable type ID, which doesn't happen with chained PCH and *certainly*
doesn't happen when sliding type IDs around. We'll need another
approach. I'll tackle that next.
llvm-svn: 136693
reader statistics), to show the local-to-global mappings. The only
such mapping we have (at least, for now) is for source location
offsets.
llvm-svn: 136687
were (Module*, Offset) with equivalent maps whose value type is just a
Module*. The offsets have moved into corresponding "Base" fields
within the Module itself, where they will also be helpful for
local->global translation (eventually).
llvm-svn: 136441
point, ASTReader::InitializeSema() has very little interesting work,
*except* issues stemming from preloaded declarations. That's something
we'll still need to cope with.
llvm-svn: 136378