There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
The script now replace '.LCPI888_8' style asm symbols with the {{\.LCPI.*}} re pattern - this helps stop hardcoded symbols in 32-bit x86 tests changing with every edit of the file
Refreshed some tests to demonstrate the new check
llvm-svn: 272488
This patch fixes the following issues:
1. Fix the return type of X86psadbw: it should not be the same type of inputs.
For vNi8 inputs the output should be vMi64, where M = N/8.
2. Fix the return type of int_x86_avx512_psad_bw_512 accordingly.
3. Fix the definiton of PSADBW, VPSADBW, and VPSADBWY accordingly.
4. Adjust the return type when building a DAG node of X86ISD::PSADBW type.
5. Update related tests.
Differential revision: http://reviews.llvm.org/D14897
llvm-svn: 254010
autogenerated.
Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.
llvm-svn: 253917
Now that we have fast vector CTPOP implementations we can use this to speed up vector CTTZ using the pattern (cttz(x) = ctpop((x & -x) - 1))
Additionally, for AVX512CD that provides lzcnt instructions we can use the pattern (cttz_undef(x) = (width - 1) - ctlz(x & -x))
Differential Revision: http://reviews.llvm.org/D12663
llvm-svn: 248091