This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
Summary:
Preserve call site info for duplicated instructions. We copy over the
call site info in CloneMachineInstrBundle to avoid repeated calls to
copyCallSiteInfo in CloneMachineInstr.
(Alternatively, we could copy call site info higher up the stack, e.g.
into TargetInstrInfo::duplicate, or even into individual backend passes.
However, I don't see how that would be safer or more general than the
current approach.)
Reviewers: aprantl, djtodoro, dstenb
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77685
Way back in D24994, the combination of LexicalScopes::dominates and
LiveDebugValues was identified as having worst-case quadratic complexity,
but it wasn't triggered by any code path at the time. I've since run into a
scenario where this occurs, in a very large basic block where large numbers
of inlined DBG_VALUEs are present.
The quadratic-ness comes from LiveDebugValues::join calling "dominates" on
every variable location, and LexicalScopes::dominates potentially touching
every instruction in a block to test for the presence of a scope. We have,
however, already computed the presence of scopes in blocks, in the
"InstrRanges" of each scope. This patch switches the dominates method to
examine whether a block is present in a scope's InsnRanges, avoiding
walking through the whole block.
At the same time, fix getMachineBasicBlocks to account for the fact that
InsnRanges can cover multiple blocks, and add some unit tests, as Lexical
Scopes didn't have any.
Differential revision: https://reviews.llvm.org/D73725