This header has long lacked a standard multiple inclusion guard
like other headers have, for no apparent reason. The GCC header
of the same name likewise lacks one up through release 10.1, but
trunk GCC (release 11, and perhaps future 10.x) has fixed it
(see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96238).
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D91226
This enables a method sending an autorelease message to an object and
returning the object in MRR to avoid adding the object to an autorelease
pool if a call to objc_retainAutoreleasedReturnValue in the caller
function accepts the hand off of the retain count.
rdar://problem/50678052
Differential Revision: https://reviews.llvm.org/D91111
The original bug was discovered in T75057860. Clang front-end emits an AST that looks like this for an co_await expression:
|- ExprWithCleanups
|- -CoawaitExpr
|- -MaterializeTemporaryExpr ... Awaiter
...
|- -CXXMemberCallExpr ... .await_ready
...
|- -CallExpr ... __builtin_coro_resume
...
|- -CXXMemberCallExpr ... .await_resume
...
ExprWithCleanups is responsible for cleaning up (including calling dtors) for the temporaries generated in the wrapping expression).
In the above structure, the __builtin_coro_resume part (which corresponds to the code for the suspend case in the co_await with symmetric transfer), the pseudocode looks like this:
__builtin_coro_resume(
awaiter.await_suspend(
from_address(
__builtin_coro_frame())).address());
One of the temporaries that's generated as part of this code is the coroutine handle returned from awaiter.await_suspend() call. The call returns a handle which is a prvalue (since it's a returned value on the fly). In order to call the address() method on it, it needs to be converted into an xvalue. Hence a materialized temp is created to hold it. This temp will need to be cleaned up eventually. Now, since all cleanups happen at the end of the entire co_await expression, which is after the <coro.suspend> suspension point, the compiler will think that such a temp needs to live across suspensions, and need to be put on the coroutine frame, even though it's only used temporarily just to call address() method.
Such a phenomena not only unnecessarily increases the frame size, but can lead to ASAN failures, if the coroutine was already destroyed as part of the await_suspend() call. This is because if the coroutine was already destroyed, the frame no longer exists, and one can not store anything into it. But if the temporary object is considered to need to live on the frame, it will be stored into the frame after await_suspend() returns.
A fix attempt was done in https://reviews.llvm.org/D87470. Unfortunately it is incorrect. The reason is that cleanups in Clang works more like linearly than nested. There is one current state indicating whether it needs cleanup, and an ExprWithCleanups resets that state. This means that an ExprWithCleanups must be capable of cleaning up all temporaries created in the wrapping expression, otherwise there will be dangling temporaries cleaned up at the wrong place.
I eventually found a walk-around (https://reviews.llvm.org/D89066) that doesn't break any existing tests while fixing the issue. But it targets the final co_await only. If we ever have a co_await that's not on the final awaiter and the frame gets destroyed after suspend, we are in trouble. Hence we need a proper fix.
This patch is the proper fix. It does the folllowing things to fully resolve the issue:
1. The AST has to be generated in the order according to their nesting relationship. We should not generate AST out of order because then the code generator would incorrectly track the state of temporaries and when a cleanup is needed. So the code in buildCoawaitCalls is reorganized so that we will be generating the AST for each coawait member call in order along with their child AST.
2. await_ready() call is wrapped with an ExprWithCleanups so that temporaries in it gets cleaned up as early as possible to avoid living across suspension.
3. await_suspend() call is wrapped with an ExprWithCleanups if it's not a symmetric transfer. In the case of a symmetric transfer, in order to maintain the musttail call contract, the ExprWithCleanups is wraaped before the resume call.
4. In the end, we mark again that it needs a cleanup, so that the entire CoawaitExpr will be wrapped with a ExprWithCleanups which will clean up the Awaiter object associated with the await expression.
Differential Revision: https://reviews.llvm.org/D90990
In C++11 standard, to become implicitly movable, the expression in return
statement should be a non-volatile automatic object. CWG1579 changed the rule
to require that the expression only needs to be an automatic object. C++14
standard and C++17 standard kept this rule unchanged. C++20 standard changed
the rule back to require the expression be a non-volatile automatic object.
This should be a typo in standards, and VD should be non-volatile.
Differential Revision: https://reviews.llvm.org/D88295
mangling support for non-type template parameters of class type and
template parameter objects.
The Itanium side of this follows the approach I proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47 on 2020-09-06.
The MSVC side of this was determined empirically by observing MSVC's
output.
Differential Revision: https://reviews.llvm.org/D89998
This patch adds three intrinsics compatible to x86's SSE 4.1 on PowerPC
target, with tests:
- _mm_insert_epi8
- _mm_insert_epi32
- _mm_insert_epi64
The intrinsics implementation is contributed by Paul Clarke.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D89242
D86841 had an error where for statements with no conditional were
required to make progress. This is not true, this patch removes that
line, and adds regression tests.
Differential Revision: https://reviews.llvm.org/D91075
Add support for the Neoverse V1 CPU to the ARM and AArch64 backends.
This is based on patches from Mark Murray and Victor Campos.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D90765
This reverts commit b1878b4641. This does
fix the test but it means that ac73b73c16 is not implemented
correctly. Reverting for now, and will be reverting the commit that
causes this to fail.
From C11 and C++11 onwards, a forward-progress requirement has been
introduced for both languages. In the case of C, loops with non-constant
conditionals that do not have any observable side-effects (as defined by
6.8.5p6) can be assumed by the implementation to terminate, and in the
case of C++, this assumption extends to all functions. The clang
frontend will emit the `mustprogress` function attribute for C++
functions (D86233, D85393, D86841) and emit the loop metadata
`llvm.loop.mustprogress` for every loop in C11 or later that has a
non-constant conditional.
This patch modifies LoopDeletion so that only loops with
the `llvm.loop.mustprogress` metadata or loops contained in functions
that are required to make progress (`mustprogress` or `willreturn`) are
checked for observable side-effects. If these loops do not have an
observable side-effect, then we delete them.
Loops without observable side-effects that do not satisfy the above
conditions will not be deleted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86844
In order not to modify the `tgt_target_data_update` information but still be
able to pass the extra information for non-contiguous map item (offset,
count, and stride for each dimension), this patch overload `arg` when
the maptype is set as `OMP_MAP_DESCRIPTOR`. The origin `arg` is for
passing the pointer information, however, the overloaded `arg` is an
array of descriptor_dim:
struct descriptor_dim {
int64_t offset;
int64_t count;
int64_t stride
};
and the array size is the same as dimension size. In addition, since we
have count and stride information in descriptor_dim, we can replace/overload the
`arg_size` parameter by using dimension size.
For supporting `stride` in array section, we use a dummy dimension in
descriptor to store the unit size. The formula for counting the stride
in dimension D_n: `unit size * (D_0 * D_1 ... * D_n-1) * D_n.stride`.
Demonstrate how it works:
```
double arr[3][4][5];
D0: { offset = 0, count = 1, stride = 8 } // offset, count, dimension size always be 0, 1, 1 for this extra dimension, stride is the unit size
D1: { offset = 0, count = 2, stride = 8 * 1 * 2 = 16 } // stride = unit size * (product of dimension size of D0) * D1.stride = 4 * 1 * 2 = 8
D2: { offset = 2, count = 2, stride = 8 * (1 * 5) * 1 = 40 } // stride = unit size * (product of dimension size of D0, D1) * D2.stride = 4 * 5 * 1 = 20
D3: { offset = 0, count = 2, stride = 8 * (1 * 5 * 4) * 2 = 320 } // stride = unit size * (product of dimension size of D0, D1, D2) * D3.stride = 4 * 25 * 2 = 200
// X here means we need to offload this data, therefore, runtime will transfer
// data from offset 80, 96, 120, 136, 400, 416, 440, 456
// Runtime patch: https://reviews.llvm.org/D82245
// OOOOO OOOOO OOOOO
// OOOOO OOOOO OOOOO
// XOXOO OOOOO XOXOO
// XOXOO OOOOO XOXOO
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84192
The strictfp metadata was added to the casting AST nodes in D85960, but
we aren't using that metadata yet. This patch adds that support.
In order to avoid lots of ad-hoc passing around of the strictfp bits I
updated the IRBuilder when moving from a function that has the Expr* to a
function that lacks it. I believe we should switch to this pattern to keep
the strictfp support from being overly invasive.
For the purpose of testing that we're picking up the right metadata, I
also made my tests use a pragma to make the AST's strictfp metadata not
match the global strictfp metadata. This exposes issues that we need to
deal with in subsequent patches, and I believe this is the right method
for most all of our clang strictfp tests.
Differential Revision: https://reviews.llvm.org/D88913
This test was added in 7f38812d5b
and all the other tests make use of the COMMONIR check. So I think
this was left in by mistake for this particular test.
Reviewed By: kpn
Differential Revision: https://reviews.llvm.org/D90921
Disable the test on Windows, which should've been obvious as being
needed. The differences in diff implementations and line-endings make
this test difficult to execute on Windows.
The behavior is controlled by the `-fprebuilt-implicit-modules` option, and
allows searching for implicit modules in the prebuilt module cache paths.
The current command-line options for prebuilt modules do not allow to easily
maintain and use multiple versions of modules. Both the producer and users of
prebuilt modules are required to know the relationships between compilation
options and module file paths. Using a particular version of a prebuilt module
requires passing a particular option on the command line (e.g.
`-fmodule-file=[<name>=]<file>` or `-fprebuilt-module-path=<directory>`).
However the compiler already knows how to distinguish and automatically locate
implicit modules. Hence this proposal to introduce the
`-fprebuilt-implicit-modules` option. When set, it enables searching for
implicit modules in the prebuilt module paths (specified via
`-fprebuilt-module-path`). To not modify existing behavior, this search takes
place after the standard search for prebuilt modules. If not
Here is a workflow illustrating how both the producer and consumer of prebuilt
modules would need to know what versions of prebuilt modules are available and
where they are located.
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v1 <config 1 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v2 <config 2 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v3 <config 3 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules_v1 <config 1 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap <non-prebuilt config options>
With prebuilt implicit modules, the producer can generate prebuilt modules as
usual, all in the same output directory. The same mechanisms as for implicit
modules take care of incorporating hashes in the path to distinguish between
module versions.
Note that we do not specify the output module filename, so `-o` implicit modules are generated in the cache path `prebuilt_modules`.
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 1 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 2 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 3 options>
The user can now simply enable prebuilt implicit modules and point to the
prebuilt modules cache. No need to "parse" command-line options to decide
what prebuilt modules (paths) to use.
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules -fprebuilt-implicit-modules <config 1 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules -fprebuilt-implicit-modules <non-prebuilt config options>
This is for example particularly useful in a use-case where compilation is
expensive, and the configurations expected to be used are predictable, but not
controlled by the producer of prebuilt modules. Modules for the set of
predictable configurations can be prebuilt, and using them does not require
"parsing" the configuration (command-line options).
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D68997
For the language C++ the keyword __unaligned (a Microsoft extension) had no effect on pointers.
The reason, why there was a difference between C and C++ for the keyword __unaligned:
For C, the Method getAsCXXREcordDecl() returns nullptr. That guarantees that hasUnaligned() is called.
If the language is C++, it is not guaranteed, that hasUnaligend() is called and evaluated.
Here are some links:
The Bug: https://bugs.llvm.org/show_bug.cgi?id=47499
Thread on the cfe-dev mailing list: http://lists.llvm.org/pipermail/cfe-dev/2020-September/066783.html
Diff, that introduced the check hasUnaligned() in getNaturalTypeAlignment(): https://reviews.llvm.org/D30166
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D90630
This adds the skeleton of the YAML Compiler for APINotes. This change
only adds the YAML IO model for the API Notes along with a new testing
tool `apinotes-test` which can be used to verify that can round trip the
YAML content properly. It provides the basis for the future work which
will add a binary serialization and deserialization format to the data
model.
This is based on the code contributed by Apple at
https://github.com/llvm/llvm-project-staging/tree/staging/swift/apinotes.
Differential Revision: https://reviews.llvm.org/D88859
Reviewed By: Gabor Marton
As described here:
https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623
In order to allow Lambdas to be used with traditional Win32 APIs, they
emit a conversion function for (what Raymond Chen claims is all) a
number of the calling conventions. Through experimentation, we
discovered that the list isn't quite 'all'.
This patch implements this by taking the list of conversions that MSVC
emits (across 'all' architectures, I don't see any CCs on ARM), then
emits them if they are supported by the current target.
However, we also add 3 other options (which may be duplicates):
free-function, member-function, and operator() calling conventions. We
do this because we have an extension where we generate both free and
member for these cases so th at people specifying a calling convention
on the lambda will have the expected behavior when specifying one of
those two.
MSVC doesn't seem to permit specifying calling-convention on lambdas,
but we do, so we need to make sure those are emitted as well. We do this
so that clang-only conventions are supported if the user specifies them.
Differential Revision: https://reviews.llvm.org/D90634
Some targets may add required passes via
TargetMachine::registerPassBuilderCallbacks(). We need to run those even
under -O0. As an example, BPFTargetMachine adds
BPFAbstractMemberAccessPass, a required pass.
This also allows us to clean up BackendUtil.cpp (and out-of-tree Rust
usage of the NPM) by allowing us to share added passes like coroutines
and sanitizers between -O0 and other optimization levels.
Tests are a continuation of those added in
https://reviews.llvm.org/D89083.
In order to prevent TargetMachines from adding unnecessary optimization
passes at -O0, TargetMachine::registerPassBuilderCallbacks() will be
changed to take an OptimizationLevel, but that will be done separately.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89158
Since C++11, the C++ standard has a forward progress guarantee
[intro.progress], so all such functions must have the `mustprogress`
requirement. In addition, from C11 and onwards, loops without a non-zero
constant conditional or no conditional are also required to make
progress (C11 6.8.5p6). This patch implements these attribute deductions
so they can be used by the optimization passes.
Differential Revision: https://reviews.llvm.org/D86841
The use of the new types introduced for PowerPC MMA instructions needs to be restricted.
We add a PowerPC function checking that the given type is valid in a context in which we don't allow MMA types.
This function is called from various places in Sema where we want to prevent the use of these types.
Differential Revision: https://reviews.llvm.org/D82035
Clang now asserts for the below case:
```
void clang::CodeGen::CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata(): Assertion `std::get<0>(E) && "All ordered entries must exist!"' failed.
```
The reason why Clang hit the assert is because in
`emitTargetDataCalls`, both `BeginThenGen` and `BeginElseGen` call
`registerTargetRegionEntryInfo` and try to register the Entry in
OffloadEntriesTargetRegion with same key. If changing the expression in
if clause to any constant expression, then the assert disappear. (https://godbolt.org/z/TW7haj)
The assert itself is to avoid
user from accessing elements out of bound inside `OrderedEntries` in
`createOffloadEntriesAndInfoMetadata`.
In this patch, I add a check in `registerTargetRegionEntryInfo` to avoid
register the target region more than once.
A test case that triggers assert: https://godbolt.org/z/4cnGW8
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D90704
Since glibc has supported math library functions conforming IEEE 128-bit
floating point types on some platform (like ppc64le), we can fix clang's
math builtins missing this type.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D90593
Add MMA builtin decoding. These builtins use the new PowerPC-specific types __vector_pair and __vector_quad.
So to avoid pervasive changes, we use custom type descriptors and custom decoding for these builtins.
We also use custom code generation to expand builtin calls with pointers to simpler intrinsic calls with non-pointer types.
Differential Revision: https://reviews.llvm.org/D81748
415f7ee883 had a silly typo introduced when I inlined some
code into a loop from its own function.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
This differentiates the Ryzen 4000/4300/4500/4700 series APUs that were
previously included in gfx909.
Differential Revision: https://reviews.llvm.org/D90419
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
Currently for explicit template function instantiation in CUDA/HIP device
compilation clang emits instantiated kernel with external linkage
and instantiated device function with internal linkage.
This is fine for -fno-gpu-rdc since there is only one TU.
However this causes duplicate symbols for kernels for -fgpu-rdc if
the same instantiation happen in multiple TU. Or missing symbols
if a device function calls an explicitly instantiated template function
in a different TU.
To make explicit template function instantiation work for
-fgpu-rdc we need to follow the C++ linkage paradigm, i.e.
use weak_odr linkage.
Differential Revision: https://reviews.llvm.org/D90311
e00629f777 "[scan-build] Fix clang++ pathname" had
removed the -MAJOR.MINOR suffix, but since presumably LLVM 7 the suffix is only
-MAJOR, so ClangCXX (i.e., the CLANG_CXX environment variable passed to
clang/tools/scan-build/libexec/ccc-analyzer) now contained a non-existing
/path/to/clang-12++ (which apparently went largely unnoticed as
clang/tools/scan-build/libexec/ccc-analyzer falls back to just 'clang++' if the
executable denoted by CLANG_CXX does not exist).
For the new clang/test/Analysis/scan-build/cxx-name.test to be effective,
%scan-build must now take care to pass the clang executable's resolved pathname
(i.e., ending in .../clang-MAJOR rather than just .../clang) to --use-analyzer.
Differential Revision: https://reviews.llvm.org/D89481
This test was removed in 5963e028e7 because it failed on cores where
support of constrained intrinsics was limited. Now this test is enabled
only on x86.
The __isPlatformVersionAtLeast routine is an implementation of `if (@available)` check
that uses the _availability_version_check API on Darwin that's supported on
macOS 10.15, iOS 13, tvOS 13 and watchOS 6.
Differential Revision: https://reviews.llvm.org/D90367
415f7ee883 had LIT test failures on any build where the clang executable
was not called "clang". I have adjusted the LIT CHECKs to remove the
binary name to fix this.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
For PS4 development we support dllimport/export annotations in
source code. This patch enables the dllimport/export attributes
on PS4 by adding a new function to query the triple for whether
dllimport/export are used and using that function to decide
whether these attributes are supported. This replaces the current
method of checking if the target is Windows.
This means we can drop the use of "TargetArch" in the .td file
(which is an improvement as dllimport/export support isn't really
a function of the architecture).
I have included a simple codgen test to show that the attributes
are accepted and have an effect on codegen for PS4. I have also
enabled the DLLExportStaticLocal and DLLImportStaticLocal
attributes, which we support downstream. However, I am unable to
write a test for these attributes until other patches for PS4
dllimport/export handling land upstream. Whilst writing this
patch I noticed that, as these attributes are internal, they do
not need to be target specific (when these attributes are added
internally in Clang the target specific checks have already been
run); however, I think leaving them target specific is fine
because it isn't harmful and they "really are" target specific
even if that has no functional impact.
Differential Revision: https://reviews.llvm.org/D90442
Similar to -fprofile-generate=, add -fmemory-profile= which takes a
directory path. This is passed down to LLVM via a new module flag
metadata. LLVM in turn provides this name to the runtime via the new
__memprof_profile_filename variable.
Additionally, always pass a default filename (in $cwd if a directory
name is not specified vi the = form of the option). This is also
consistent with the behavior of the PGO instrumentation. Since the
memory profiles will generally be fairly large, it doesn't make sense to
dump them to stderr. Also, importantly, the memory profiles will
eventually be dumped in a compact binary format, which is another reason
why it does not make sense to send these to stderr by default.
Change the existing memprof tests to specify log_path=stderr when that
was being relied on.
Depends on D89086.
Differential Revision: https://reviews.llvm.org/D89087
Adds a diagnostic when the user annotates an `if constexpr` with a
likelihood attribute. The `if constexpr` statement is evaluated at compile
time so the attribute has no effect. Annotating the accompanied `else`
with a likelihood attribute has the same effect as annotating a generic
statement. Since the attribute there is most likely not intended, a
diagnostic will be issued. Since the attributes can't conflict, the
"conflict" won't be diagnosed for an `if constexpr`.
Differential Revision: https://reviews.llvm.org/D90336
The attribute has no effect on a do statement since the path of execution
will always include its substatement.
It adds a diagnostic when the attribute is used on an infinite while loop
since the codegen omits the branch here. Since the likelihood attributes
have no effect on a do statement no diagnostic will be issued for
do [[unlikely]] {...} while(0);
Differential Revision: https://reviews.llvm.org/D89899
Pragma 'clang fp' is extended to support a new option, 'exceptions'. It
allows to specify floating point exception behavior more flexibly.
Differential Revision: https://reviews.llvm.org/D89849
This patch mainly made the following changes:
1. Support AVX-VNNI instructions;
2. Introduce ExplicitVEXPrefix flag so that vpdpbusd/vpdpbusds/vpdpbusds/vpdpbusds instructions only use vex-encoding when user explicity add {vex} prefix.
Differential Revision: https://reviews.llvm.org/D89105
friends.
When determining whether a function has a template instantiation
pattern, look for other declarations of that function that were
instantiated from a friend function definition, rather than assuming
that checking for member specialization information on whichever
declaration name lookup found will be sufficient.
This is to enable --allow-unused-duplicates=false. This prefix appears
to be outdated and intentionally unused.
Differential Revision: https://reviews.llvm.org/D90430
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This patch adds tests and support for operations on SVE vectors created
by the 'arm_sve_vector_bits' attribute, described by the Arm C Language
Extensions (ACLE, version 00bet6, section 3.7.3.3) for SVE [1].
This covers the following:
* VLSTs support the same forms of element-wise initialization as GNU
vectors.
* VLSTs support the same built-in C and C++ operators as GNU vectors.
* Conditional and binary expressions containing GNU and SVE vectors
(fixed or sizeless) are invalid since the ambiguity around the result
type affects the ABI.
No functional changes were required to support vector initialization and
operators. The functional changes are to address unsupported conditional and
binary expressions.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D88233
As mentioned in the defect, the lambda static invoker does not follow
the calling convention of the lambda itself, which seems wrong. This
patch ensures that the calling convention of operator() is passed onto
the invoker and conversion-operator type.
This is accomplished by extracting the calling-convention determination
code out into a separate function in order to better reflect the 'thiscall'
work, as well as somewhat better support the future implementation of
https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623
For any target (basically just win32) that has a different free and
static function calling convention, this generates BOTH alternatives.
This required some work to get the Windows mangler to work correctly for
this, as well as some tie-breaking for the unary operators.
Differential Revision: https://reviews.llvm.org/D89559
We don't currently support passing unnamed variadic SVE arguments
so I've added a fatal error if we hit such cases to prevent any
silent ABI issues in future.
Differential Revision: https://reviews.llvm.org/D90230
This patch is mainly doing two things:
1. Adding support for parentheses, making the combination of target features
more diverse;
2. Making the priority of ’,‘ is higher than that of '|' by default. So I need
to make some change with PTX Builtin function.
Differential Revision: https://reviews.llvm.org/D89184
When passing -lto-embed-bitcode=post-merge-pre-opt, we were getting
empty .llvmcmd sections. It turns out that is because the
CodeGenOptions::CmdArgs field was only populated when clang saw
-fembed-bitcode={all|marker}.
This patch always populates the CodeGenOptions::CmdArgs. The overhead
of carrying through in memory in all cases is likely negligible in
the grand schema of things, and it keeps the using code simple.
Differential Revision: https://reviews.llvm.org/D90366
[AMDGPU] Add __builtin_amdgcn_grid_size
Similar to D76772, loads the data from the dispatch pointer. Marked invariant.
Patch also updates the openmp devicertl to use this builtin.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D90251
We've implemented integrated assembler. Now, we change to use
integrated assembler by default. Update a regression test also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D90396
llvm::EmbedBitcodeInModule needs (what used to be called) EmbedMarker
set, in order to emit .llvmcmd. EmbedMarker is really about embedding the
command line, so renamed the parameter accordingly, too.
This was not caught at test because the check-prefix was incorrect, but
FileCheck does not report that when multiple prefixes are provided. A
separate patch will address that.
Differential Revision: https://reviews.llvm.org/D90278
Since Wasm comdat sections work similarly to ELF, we can use that mechanism
to eliminate duplicate dwarf type information in the same way.
Differential Revision: https://reviews.llvm.org/D88603
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
This changes CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
This reverts commit 504615353f.
Checks to make sure that stdlib's (std::)free is being appropriately
used. Presently checks for the following misuses:
- free(&stack_object)
- free(stack_array)
Differential Revision: https://reviews.llvm.org/D89988
We collect the source location of a trailing return type in the parser,
improving the location for regular functions and providing a location
for lambdas, where previously there was none.
Fixes PR47732.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90129
classes into the enclosing block scope.
We weren't properly detecting whether the name would be injected into a
block scope in the case where it was lexically declared in a local
class.
Previously we added support for target nowait, but target data nowait
has not been supported yet. In this patch, target data nowait will also be
wrapped into a task.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90099
Define the __vector_pair and __vector_quad types that are used to manipulate
the new accumulator registers introduced by MMA on PowerPC. Because these two
types are specific to PowerPC, they are defined in a separate new file so it
will be easier to add other PowerPC specific types if we need to in the future.
Differential Revision: https://reviews.llvm.org/D81508
As proposed in https://github.com/WebAssembly/simd/pull/376. This commit
implements new builtin functions and intrinsics for these instructions, but does
not yet add them to wasm_simd128.h because they have not yet been merged to the
proposal. These are the first instructions with opcodes greater than 0xff, so
this commit updates the MC layer and disassembler to handle that correctly.
Differential Revision: https://reviews.llvm.org/D90253
[libomptarget][nvptx] Undef, weak shared variables
Shared variables on nvptx, and LDS on amdgcn, are uninitialized at
the start of kernel execution. Therefore create the variables with
undef instead of zeros, motivated in part by the amdgcn back end
rejecting LDS+initializer.
Common is zero initialized, which seems incompatible with shared. Thus
change them to weak, following the direction of
https://reviews.llvm.org/rG7b3eabdcd215
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90248
Summary:
Propagate driver commandline remarks options to linker when LTO is enabled.
This gives novice user a convenient way to collect and filter remarks throughout
a typical toolchain invocation with sample profile and LTO using single switch
from the clang driver.
A typical use of this option from clang command-line:
* Using -Rpass* options to print remarks to screen:
clang -fuse-ld=lld -flto=thin -fprofile-sample-use=foo_sample.txt
-Rpass=inline -Rpass-missed=inline -Rpass-analysis=inline
-fdiagnostics-show-hotness -fdiagnostics-hotness-threshold=100 -o foo foo.cpp
Remarks will be dumped to screen from both pre-lto and lto
compilation.
* Using serialized remarks options
clang -fuse-ld=lld -flto=thin -fprofile-sample-use=foo_sample.txt
-fsave-optimization-record
-fdiagnostics-show-hotness -fdiagnostics-hotness-threshold=100 -o foo foo.cpp
This will produce multiple yaml files containing optimization remarks:
1. foo.opt.yaml : remarks from pre-lto
2. foo.opt.ld.yaml.thin.1.yaml: remark during lto
Differential Revision: https://reviews.llvm.org/D85810
Since Wasm comdat sections work similarly to ELF, we can use that mechanism
to eliminate duplicate dwarf type information in the same way.
Differential Revision: https://reviews.llvm.org/D88603
Summary:
This patch adds support for passing in the original delcaration name in the
source file to the libomptarget runtime. This will allow the runtime to provide
more intelligent debugging messages. This patch takes the original expression
parsed from the OpenMP map / update clause and provides a textual
representation if it was explicitly mapped, otherwise it takes the name of the
variable declaration as a fallback. The information in passed to the runtime in
a global array of strings that matches the existing ident_t source location
strings using ";name;filename;column;row;;". See
clang/test/OpenMP/target_map_names.cpp for an example of the generated output
for a given map clause.
Reviewers: jdoervert
Differential Revision: https://reviews.llvm.org/D89802
In current implementation, if it requires an outer task, the mapper array will be privatized no matter whether it has mapper. In fact, when there is no mapper, the mapper array only contains number of nullptr. In the libomptarget, the use of mapper array is `if (mappers_array && mappers_array[i])`, which means we can directly set mapper array to nullptr if there is no mapper. This can avoid unnecessary data copy.
In this patch, the data privatization will not be emitted if the mapper array is nullptr. When it comes to the emit of task body, the nullptr will be used directly.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90101
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
Summary:
Makes linking the sanitizers follow the same logic as the rest of the
driver with respect to the static linking strategy for the C++ standard
library.
Subscribers: mcrosier, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80488
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
I changed CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
Prepend the module name hash with a fixed string ".__uniq." which helps tools
that consume sampled profiles and attribute it to functions to understand
that this symbol belongs to a unique internal linkage type symbol.
Symbols with suffixes can result from various optimizations in the compiler.
Function Multiversioning, function splitting, parameter constant propogation,
unique internal linkage names.
External tools like sampled profile aggregators combine profiles from multiple
runs of a binary. They use various heuristics with symbols that have suffixes
to try and attribute the profile to the right function instance. For instance
multi-versioned symbols like foo.avx, foo.sse4.2, etc even though different
should be attributed to the same source function if a single function is
versioned, using attribute target_clones (supported in GCC but yet to land in
LLVM). Similarly, functions that are split (split part having a .cold suffix)
could have profiles for both the original and split symbols but would be
aggregated and attributed to the original function that was split.
Unique internal linkage functions however have different source instances and
the aggregator must not put them together but attribute it to the appropriate
function instance. To be sure that we are dealing with a symbol of a unique
internal linkage function, we would like to prepend the hash with a known
string ".__uniq." which these tools can check to understand the suffix type.
Differential Revision: https://reviews.llvm.org/D89617
Because of typo-correction, the AST can be transformed, and the transformed
AST is marginally useful for diagnostics purpose, the following
diagnostics usually do harm than good (easily cause confusions).
Given the following code:
```
void abcc();
void test() {
if (abc());
// diagnostic 1 (for the typo-correction): the typo is correct to `abcc()`, so the code is treate as `if (abcc())` in AST perspective;
// diagnostic 2 (for mismatch type): we perform an type-analysis on `if`, discover the type is not match
}
```
The secondary diagnostic "convertable to bool" is likely bogus to users.
The idea is to use RecoveryExpr (clang's dependent mechanism) to preserve the
recovery behavior but suppress all follow-up diagnostics.
Differential Revision: https://reviews.llvm.org/D89946
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
For now, we lost the encoding information if we using inline assembly.
The encoding for the inline assembly will keep default even if we add
the vex/evex prefix.
Differential Revision: https://reviews.llvm.org/D90009
Instead of just mutex members we also consider mutex globals.
Unsurprisingly they are always in scope. Now the paper [1] says that
> The scope of a class member is assumed to be its enclosing class,
> while the scope of a global variable is the translation unit in
> which it is defined.
But I don't think we should limit this to TUs where a definition is
available - a declaration is enough to acquire the mutex, and if a mutex
is really limited in scope to a translation unit, it should probably be
only declared there.
The previous attempt in 9dcc82f34e was causing false positives because
I wrongly assumed that LiteralPtrs were always globals, which they are
not. This should be fixed now.
[1] https://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/42958.pdf
Fixes PR46354.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D84604
This patch introduces the dependencies required to read and manage input files
provided by the command line option. It also adds the infrastructure to create
and write to output files. The output is sent to either stdout or a file
(specified with the `-o` flag).
Separately, in order to be able to test the code for file I/O, it adds
infrastructure to create frontend actions. As a basic testable example, it adds
the `InputOutputTest` FrontendAction. The sole purpose of this action is to
read a file from the command line and print it either to stdout or the output
file. This action is run by using the `-test-io` flag also introduced in this
patch (available for `flang-new` and `flang-new -fc1`). With this patch:
```
flang-new -test-io input-file.f90
```
will read input-file.f90 and print it in the output file.
The `InputOutputTest` frontend action has been introduced primarily to
facilitate testing. It is hidden from users (i.e. it's only displayed with
`--help-hidden`). Currently Clang doesn’t have an equivalent action.
`-test-io` is used to trigger the InputOutputTest action in the Flang frontend
driver. This patch makes sure that “flang-new” forwards it to “flang-new -fc1"
by creating a preprocessor job. However, in Flang.cpp, `-test-io` is passed to
“flang-new -fc1” without `-E`. This way we make sure that the preprocessor is
_not_ run in the frontend driver. This is the desired behaviour: `-test-io`
should only read the input file and print it to the output stream.
co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Differential Revision: https://reviews.llvm.org/D87989
lambda-expression's captures.
The built-in structured binding rules for classes require that all
fields can be accessed by name, and the fields introduced for lambda
captures are unnamed, so decomposing a capturing lambda is ill-formed.
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
On AIX, to support vector types, which should always be 16 bytes aligned,
we set alloca to return 16 bytes aligned memory space.
Differential Revision: https://reviews.llvm.org/D89910
If CUDA version can not be determined based on version.txt file, attempt to find
CUDA_VERSION macro in cuda.h.
This is a follow-up to D89752,
Differntial Revision: https://reviews.llvm.org/D89832
CUDA-11.1 does not carry version.txt which causes clang to assume that it's
CUDA-7.0, which used to be the only CUDA version w/o version.txt.
In order to tell CUDA-7.0 apart from the new versions, clang now probes for the
presence of libdevice.10.bc which is not present in the old CUDA versions.
This should keep Clang working for CUDA-11.1.
PR47332: https://bugs.llvm.org/show_bug.cgi?id=47332
Differential Revision: https://reviews.llvm.org/D89752
1. Emit error for -G driver option on AIX
2. Adjust cmake file to use -Wl,-G instead of -G
On AIX, legacy XL compiler uses -G to produce a shared object enabled
for use with the run-time linker, which has different meanings from what
it is used for in Clang. And in Clang, other targets do not have -G map
to another functionality in their legacy compiler. So this error is more
important when we are on AIX.
Differential Revision: https://reviews.llvm.org/D89897
Many non-language extensions are defined but also unused. This patch
removes them with their tests as they do not require compiler support.
The cl_khr_select_fprounding_mode extension is also removed because it
has been deprecated since OpenCL 1.1 and Clang doesn't have any specific
support for it.
The cl_khr_context_abort extension is only referred to in "The OpenCL
Specification", version 1.2 and 2.0, in Table 4.3, but no specification
is provided in "The OpenCL Extension Specification" for these versions.
Because it is both unused in Clang and lacks specification, this
extension is removed.
The following extensions are platform extensions that bring new OpenCL
APIs but do not impact the kernel language nor require compiler support.
They are therefore removed.
- cl_khr_gl_sharing, introduced in OpenCL 1.0
- cl_khr_icd, introduced in OpenCL 1.2
- cl_khr_gl_event, introduced in OpenCL 1.1
Note: this extension adds a new API to create cl_event but it also
specifies that these can only be used by clEnqueueAcquireGLObjects.
Hence, they cannot be used on the device side and the extension does
not impact the kernel language.
- cl_khr_d3d10_sharing, introduced in OpenCL 1.1
- cl_khr_d3d11_sharing, introduced in OpenCL 1.2
- cl_khr_dx9_media_sharing, introduced in OpenCL 1.2
- cl_khr_image2d_from_buffer, introduced in OpenCL 1.2
- cl_khr_initialize_memory, introduced in OpenCL 1.2
- cl_khr_gl_depth_images, introduced in OpenCL 1.2
Note: this extension is related to cl_khr_depth_images but only the
latter adds new features to the kernel language.
- cl_khr_spir, introduced in OpenCL 1.2
- cl_khr_egl_event, introduced in OpenCL 1.2
Note: this extension adds a new API to create cl_event but it also
specifies that these can only be used by clEnqueueAcquire* API
functions. Hence, they cannot be used on the device side and the
extension does not impact the kernel language.
- cl_khr_egl_image, introduced in OpenCL 1.2
- cl_khr_terminate_context, introduced in OpenCL 1.2
The minimum required OpenCL version used in OpenCLExtensions.def for
these extensions is not always correct. Removing these address that
issue.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D89372
This requires that we track enough information to determine the original
type of the parameter in a substituted non-type template parameter, to
distinguish the reference-to-class case from the class case.
The changes made in D88594 caused the test OpenMP/driver.c to fail on a 32-bit host becuase it was offloading to a 64-bit architecture by default. The offloading test was moved to a new file and a feature was added to the lit config to check for a 64-bit host.
Reviewed By: daltenty
Differential Revision: https://reviews.llvm.org/D89904
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
Changes:
- initializer expressions of constexpr variable are now wraped in a ConstantExpr. this is mainly used for testing purposes. the old caching system has not yet been removed.
- Add all the missing Serialization and Importing for APValue.
- Improve dumping of APValue when ASTContext isn't available.
- Cleanup leftover from last patch.
- Add Tests for Import and serialization.
Differential Revision: https://reviews.llvm.org/D63640
LLVM assumes that when it creates a call to a C library function it
can use the C calling convention. On ARM the effective calling
convention is determined from the target triple, however using
-mfloat-abi=hard on ARM means that calls to (and definitions of) C
library functions use the arm_aapcs_vfpcc calling convention which can
result in a mismatch.
Fix this by incorporating -mfloat-abi into the target triple, similar
to how -mbig-endian and -march/-mcpu are. This only works for EABI
targets and not Android or iOS, but there the float abi is fixed so
instead give an error.
Fixes PR45524
Differential Revision: https://reviews.llvm.org/D89573
assembly operands."
Earlyclobbers are now excepted from this change (original commit: c78da03).
Review: Ulrich Weigand, Nick Desaulniers
Differential Revision: https://reviews.llvm.org/D87279
when instantiating the enclosing class.
We'll build new lambda closure types if and when we instantiate the
default member initializer, and instantiating the closure type by itself
can go wrong in cases where we fully-instantiate nested classes (in
explicit instantiations of the enclosing class and when the enclosing
class is a local class) -- we will instantiate the 'operator()' as a
regular function rather than as a lambda call operator, so it doesn't
get to use its captures, has the wrong 'this' type, etc.
Permitting non-standards-driven "do the best you can" constant-folding
of array bounds is permitted solely as a GNU compatibility feature. We
should not be doing it in any language mode that is attempting to be
conforming.
From https://reviews.llvm.org/D20090 it appears the intent here was to
permit `__constant int` globals to be used in array bounds, but the
change in that patch only added half of the functionality necessary to
support that in the constant evaluator. This patch adds the other half
of the functionality and turns off constant folding for array bounds in
OpenCL.
I couldn't find any spec justification for accepting the kinds of cases
that D20090 accepts, so a reference to where in the OpenCL specification
this is permitted would be useful.
Note that this change also affects the code generation in one test:
because after 'const int n = 0' we now treat 'n' as a constant
expression with value 0, it's now a null pointer, so '(local int *)n'
forms a null pointer rather than a zero pointer.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D89520
With -fbasicblock-sections=, let the front-end handle the case where the file
doesnt exist. The driver only checks if the option syntax is right.
Differential Revision: https://reviews.llvm.org/D89500
In D86000 we added a new sanitizer to the integer group
without adding it to the trapping group. This broke usage of
-fsanitize=integer -fsanitize-trap=integer or -fsanitize=integer
-fsanitize-minimal-runtime.
I think we can reasonably expect any new integer sanitizers to be
compatible with trapping and the minimal runtime, so add them to the
trapping group automatically.
Also add a test to ensure that any future additions of sanitizers
to the integer group will most likely result in test failures which
would lead to updates to the minimal runtime if necessary. For this
particular sanitizer no updates are required because it uses the
existing shift_out_of_bounds callback function.
Differential Revision: https://reviews.llvm.org/D89766
D70365 allows us to make attributes default. This is a follow up to
actually make nosync, nofree and willreturn default. The approach we
chose, for now, is to opt-in to default attributes to avoid introducing
problems to target specific intrinsics. Intrinsics with default
attributes can be created using `DefaultAttrsIntrinsic` class.
This fixes miscomputation of __builtin_constant_evaluated in the
initializer of a variable that's not usable in constant expressions, but
is readable when constant-folding.
If evaluation of a constant initializer fails, we throw away the
evaluated result instead of keeping it as a non-constant-initializer
value for the variable, because it might not be a correct value.
To avoid regressions for initializers that are foldable but not formally
constant initializers, we now try constant-evaluating some globals in
C++ twice: once to check for a constant initializer (in an mode where
is_constannt_evaluated returns true) and again to determine the runtime
value if the initializer is not a constant initializer.
* Make cc1 and cc1as --compress-debug-sections an alias for --compress-debug-sections=zlib
* Make -gz an alias for -gz=zlib
The new behavior is consistent with GCC when binutils>=2.26 is detected:
-gz is translated to --compress-debug-sections=zlib instead of --compress-debug-sections.
The name is unfortunate because it is similar to the driver option -ftest-coverage.
It turns out aside from one occurrence in a test, this option is not used.
for which it matters.
This is a step towards separating checking for a constant initializer
(in which std::is_constant_evaluated returns true) and any other
evaluation of a variable initializer (in which it returns false).
Recently commit D78699 (commit 26cfb6e562), fixed clang's behavior with respect
to passing a union type through a register to correctly follow the ABI. However,
this is an ABI breaking change with earlier versions of the clang compiler, so we
should add an -fclang-abi-compat option to address this. Additionally, the PS4 ABI
requires the older behavior, so that is added as well.
This change adds a Ver11 value to the ClangABI enum that when it is set (or the
target is the PS4 triple), we skip the ABI fix introduced in D78699.
Differential Revision: https://reviews.llvm.org/D89747
The changes made in D88594 caused the test OpenMP/driver.c to fail on a 32-bit host becuase it was offloading to a 64-bit architecture by default. The offloading test was moved to a new file and a feature was added to the lit config to check for a 64-bit host.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89696
- Extend hip-toolchin-features.hip to also check the lld attributes
are passed correctly.
- Add check for cumode attributes.
Differential Revision: https://reviews.llvm.org/D89636
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
The semantics associated with `__vector [un]signed long` are neither
consistently specified nor consistently implemented.
The IBM XL compilers on AIX traditionally treated these as deprecated
aliases for the corresponding `__vector int` type in both 32-bit and
64-bit modes. The newer, Clang-based, IBM XL compilers on AIX make usage
of the previously deprecated types an error. This is also consistent
with IBM XL C/C++ for Linux on Power (on little endian distributions).
In line with the above, this patch upgrades (on AIX) the deprecation of
`__vector long` to become removal.
Reviewed By: ZarkoCA
Differential Revision: https://reviews.llvm.org/D89443
This implements the likelihood attribute for the switch statement. Based on the
discussion in D85091 and D86559 it only handles the attribute when placed on
the case labels or the default labels.
It also marks the likelihood attribute as feature complete. There are more QoI
patches in the pipeline.
Differential Revision: https://reviews.llvm.org/D89210
initialization a little smarter.
Look through casts that preserve zero-ness when determining if an
initializer is zero, so that we can handle cases like an {0} initializer
whose corresponding field is a type other than 'int'.
Old GCC used to aggressively fold VLAs to constant-bound arrays at block
scope in GNU mode. That's non-conforming, and more modern versions of
GCC only do this at file scope. Update Clang to do the same.
Also promote the warning for this from off-by-default to on-by-default
in all cases; more recent versions of GCC likewise warn on this by
default.
This is still slightly more permissive than GCC, as pointed out in
PR44406, as we still fold VLAs to constant arrays in structs, but that
seems justifiable given that we don't support VLA-in-struct (and don't
intend to ever support it), but GCC does.
Differential Revision: https://reviews.llvm.org/D89523
This addresses a regression where pretty much all C++ compilations using
-frounding-math now fail, due to rounding being performed in constexpr
function definitions in the standard library.
This follows the "manifestly constant evaluated" approach described in
https://reviews.llvm.org/D87528#2270676 -- evaluations that are required
to succeed at compile time are permitted even in regions with dynamic
rounding modes, as are (unfortunately) the evaluation of the
initializers of local variables of const integral types.
Differential Revision: https://reviews.llvm.org/D89360
After investigation by @asbirlea, the issue that caused the
revert appears to be an issue in the original source, rather
than a problem with the compiler.
This patch enables MemorySSA DSE again.
This reverts commit 915310bf14.
This test was failing in our CI environment, because Jenkins mounts the workspaces into Docker containers using their full path, i.e. /home/jenkins/workspaces/llvm-build.
We've seen permission denied errors because /home/jenkins is mounted with root permissions and the default cache directory under Linux is $HOME/.cache.
The fix is to explicitly provide the -fmodules-cache-path, which the other tests already seem to provide.
Reviewed By: akyrtzi
Differential Revision: https://reviews.llvm.org/D89453
- The goal of this patch is improve option compatible with RISCV-V GCC,
-mcpu support on GCC side will sent patch in next few days.
- -mtune only affect the pipeline model and non-arch/extension related
target feature, e.g. instruction fusion; in td file it called
TuneFeatures, which is introduced by X86 back-end[1].
- -mtune accept all valid option for -mcpu and extra alias processor
option, e.g. `generic`, `rocket` and `sifive-7-series`, the purpose is
option compatible with RISCV-V GCC.
- Processor alias for -mtune will resolve according the current target arch,
rv32 or rv64, e.g. `rocket` will resolve to `rocket-rv32` or `rocket-rv64`.
- Interaction between -mcpu and -mtune:
* -mtune has higher priority than -mcpu for pipeline model and
TuneFeatures.
[1] https://reviews.llvm.org/D85165
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D89025
folding to not constant folding.
Constant folding of ICEs is done as a GCC compatibility measure, but new
code was picking it up, presumably by accident, due to the bad default.
While here, also switch the flag from a bool to an enum to make it more
obvious what it means at call sites. This highlighted a couple of places
where our behavior is different between C++11 and C++14 due to switching
from checking for an ICE to checking for a converted constant
expression (where there is no 'fold' codepath).
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
rL131311 added `asm()` support for builtin functions, but `asm()` for builtins with
specialized emitting (e.g. memcpy, various math functions) still do not work.
This patch makes these functions work for `asm()` and `#pragma redefine_extname`.
glibc uses `asm()` to redirect internal libc function calls to hidden aliases.
Limitation: such a function is a builtin in clang, but will not be recognized as
a libcall in optimization passes because Clang does not annotate the renamed
function as a libcall. In GCC -O1 or above, `abs` can be optimized out but we can't.
Additionally, we cannot redirect `__builtin_sin` to `real_sin` in the following example:
double sin(double x) asm("real_sin");
double f(double d) { return __builtin_sin(d); }
---
According to @rsmith, the following three statements cannot be simultaneously true:
(1) The frontend function foo has known, builtin semantics X.
(2) The symbol foo has known, builtin semantics X.
(3) It's not correct to lower a call to the frontend function foo to the symbol foo.
People do want (1) (if it is profitable to expand a memcpy, do it).
This also means that people do not want to add -fno-builtin-memcpy.
People do want (3): that is why they use asm("__GI_memcpy") in the first place.
So unfortunately we make a compromise by not refuting (2) (see the limitation above).
For most libcalls, there is a small loss because compilers don't synthesize them.
For the few glibc cares about, it uses `asm("memcpy = __GI_memcpy");` to make
the assembly level redirection.
(Changing function names (e.g. `__memcpy`) is a hit to ergonomics which is not acceptable).
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D88712
This reverts commits 683b308c07 and
8487bfd4e9.
We will go for a more restricted approach that does not give freedom to
everyone to change ABIs on whichever platform.
See the discussion on https://reviews.llvm.org/D85802.
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
Previously we failed to convert 'p' from array/function to pointer type,
and to represent the load of 'p' in the AST. The latter causes problems
for constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
This implements the flag proposed in RFC http://lists.llvm.org/pipermail/cfe-dev/2020-August/066437.html.
The goal is to add a way to override the default target C++ ABI through
a compiler flag. This makes it easier to test and transition between different
C++ ABIs through compile flags rather than build flags.
In this patch:
- Store `-fc++-abi=` in a LangOpt. This isn't stored in a
CodeGenOpt because there are instances outside of codegen where Clang
needs to know what the ABI is (particularly through
ASTContext::createCXXABI), and we should be able to override the
target default if the flag is provided at that point.
- Expose the existing ABIs in TargetCXXABI as values that can be passed
through this flag.
- Create a .def file for these ABIs to make it easier to check flag
values.
- Add an error for diagnosing bad ABI flag values.
Differential Revision: https://reviews.llvm.org/D85802
clang --target arm-none-eabi --print-libgcc-file-name --rtlib=compiler-rt
used to print `/path/to/lib/clang/version/lib/libclang_rt.builtins-arm.a`
but should print `/path/to/lib/clang/version/lib/baremetal/libclang_rt.builtins-arm.a`.
Similarly, --target armv7m-none-eabi should print libclang_rt.builtins-armv7m.a
This matches the compiler-rt file name used at link time in the
baremetal driver.
Reviewed By: manojgupta
Differential Revision: https://reviews.llvm.org/D89327
Summary:
This patch does the following:
1. Make InitTargetOptionsFromCodeGenFlags() accepts Triple as a
parameter, because some options' default value is triple dependant.
2. DataSections is turned on by default on AIX for llc.
3. Test cases change accordingly because of the default behaviour change.
4. Clang Driver passes in -fdata-sections by default on AIX.
Reviewed By: MaskRay, DiggerLin
Differential Revision: https://reviews.llvm.org/D88737
During the import of attributes we forgot to set the spelling list
index. This caused a segfault when we wanted to traverse the AST
(e.g. by the dump() method).
Differential Revision: https://reviews.llvm.org/D89318
During the import of FormatAttrs we forgot to import the type (e.g
`__scanf__`) of the attribute. This caused a segfault when we wanted to
traverse the AST (e.g. by the dump() method).
Differential Revision: https://reviews.llvm.org/D89319
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
AIX has different layout dumping format from other itanium ABIs.
And for these two cases, use regex to match AIX format.
Differential Revision: https://reviews.llvm.org/D89064
Change EmitAsmStmt() to
- Not tie physregs with the "+r" constraint, but instead add the hard
register as an input constraint. This makes "+r" and "=r":"r" look the same
in the output.
Background: Macro intensive user code may contain inline assembly
statements with multiple operands constrained to the same physreg. Such a
case (with the operand constraints "+r" : "r") currently triggers the
TwoAddressInstructionPass assertion against any extra use of a tied
register. Furthermore, TwoAddress will insert a COPY to that physreg even
though isel has already done so (for the non-tied use), which may lead to a
second redundant instruction currently. A simple fix for this is to not
emit tied physreg uses in the first place for the "+r" constraint, which is
what this patch does.
- Give an error on multiple outputs to the same physical register.
This should be reported and this is also what GCC does.
Review: Ulrich Weigand, Aaron Ballman, Jennifer Yu, Craig Topper
Differential Revision: https://reviews.llvm.org/D87279