Summary:
This diff adds support to allow `linalg.generic` and
`linalg.indexed_generic` to take tensor input and output
arguments.
The subset of output tensor operand types must appear
verbatim in the result types after an arrow. The parser,
printer and verifier are extended to accomodate this
behavior.
The Linalg operations now support variadic ranked tensor
return values. This extension exhibited issues with the
current handling of NativeCall in RewriterGen.cpp. As a
consequence, an explicit cast to `SmallVector<Value, 4>`
is added in the proper place to support the new behavior
(better suggestions are welcome).
Relevant cleanups and name uniformization are applied.
Relevant invalid and roundtrip test are added.
Reviewers: mehdi_amini, rriddle, jpienaar, antiagainst, ftynse
Subscribers: burmako, shauheen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72022
Lots of SPIR-V ops take enum attributes and certain enum cases
need extra capabilities or extensions to be available. This commit
extends to allow specifying availability spec on enum cases.
Extra utility functions are generated for the corresponding enum
classes to return the availability requirement. The availability
interface implemention for a SPIR-V op now goes over all enum
attributes to collect the availability requirements.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D71947
for (const auto &x : llvm::zip(..., ...))
->
for (auto x : llvm::zip(..., ...))
The return type of zip() is a wrapper that wraps a tuple of references.
> warning: loop variable 'p' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<long> &, ArrayRef<long> &>' does not return a reference [-Wrange-loop-analysis]
SPIR-V has a few mechanisms to control op availability: version,
extension, and capabilities. These mechanisms are considered as
different availability classes.
This commit introduces basic definitions for modelling SPIR-V
availability classes. Specifically, an `Availability` class is
added to SPIRVBase.td, along with two subclasses: MinVersion
and MaxVersion for versioning. SPV_Op is extended to take a
list of `Availability`. Each `Availability` instance carries
information for generating op interfaces for the corresponding
availability class and also the concrete availability
requirements.
With the availability spec on ops, we can now auto-generate the
op interfaces of all SPIR-V availability classes and also
synthesize the op's implementations of these interfaces. The
interface generation is done via new TableGen backends
-gen-avail-interface-{decls|defs}. The op's implementation is
done via -gen-spirv-avail-impls.
Differential Revision: https://reviews.llvm.org/D71930
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This enables providing a default implementation of an interface method. This method is defined on the Trait that is attached to the operation, and thus has all of the same constraints and properties as any other interface method. This allows for interface authors to provide a conservative default implementation for certain methods, without requiring that all users explicitly define it. The default implementation can be specified via the argument directly after the interface method body:
StaticInterfaceMethod<
/*desc=*/"Returns whether two array of types are compatible result types for an op.",
/*retTy=*/"bool",
/*methodName=*/"isCompatibleReturnTypes",
/*args=*/(ins "ArrayRef<Type>":$lhs, "ArrayRef<Type>":$rhs),
/*methodBody=*/[{
return ConcreteOp::isCompatibleReturnTypes(lhs, rhs);
}],
/*defaultImplementation=*/[{
/// Returns whether two arrays are equal as strongest check for
/// compatibility by default.
return lhs == rhs;
}]
PiperOrigin-RevId: 286226054
Scope and Memory Semantics attributes need to be serialized as a
constant integer value and the <id> needs to be used to specify the
value. Fix the auto-generated SPIR-V (de)serialization to handle this.
PiperOrigin-RevId: 285849431
This is needed for calling the generator on a .td file that contains both OpInterface definitions and op definitions with DeclareOpInterfaceMethods<...> Traits.
PiperOrigin-RevId: 285465784
Add variant that does invoke infer type op interface where defined. Also add entry function that invokes that different separate argument builders for wrapped, unwrapped and inference variant.
PiperOrigin-RevId: 285220709
Currently named accessors are generated for attributes returning a consumer
friendly type. But sometimes the attributes are used while transforming an
existing op and then the returned type has to be converted back into an
attribute or the raw `getAttr` needs to be used. Generate raw named accessor
for attributes to reference the raw attributes without having to use the string
interface for better compile time verification. This allows calling
`blahAttr()` instead of `getAttr("blah")`.
Raw here refers to returning the underlying storage attribute.
PiperOrigin-RevId: 284583426
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
Previously the error case was using a sentinel in the error case which was bad. Also make the one `build` invoke the other `build` to reuse verification there.
And follow up on suggestion to use formatv which I missed during previous review.
PiperOrigin-RevId: 284265762
For ops with infer type op interface defined, generate version that calls the inferal method on build. This is intermediate step to removing special casing of SameOperandsAndResultType & FirstAttrDereivedResultType. After that would be generating the inference code, with the initial focus on shaped container types. In between I plan to refactor these a bit to reuse generated paths. The intention would not be to add the type inference trait in multiple places, but rather to take advantage of the current modelling in ODS where possible to emit it instead.
Switch the `inferReturnTypes` method to be static.
Skipping ops with regions here as I don't like the Region vs unique_ptr<Region> difference at the moment, and I want the infer return type trait to be useful for verification too. So instead, just skip it for now to avoid churn.
PiperOrigin-RevId: 284217913
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.
This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.
PiperOrigin-RevId: 283355919
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.
PiperOrigin-RevId: 283339992
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.
This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.
PiperOrigin-RevId: 282467075
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}
// May now be printed as:
%first, %middle:2, %0 = "my.op" ...
PiperOrigin-RevId: 281834156
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.
This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.
PiperOrigin-RevId: 281555100
Thus far DRR always invokes the separate-parameter builder (i.e., requiring
a separate parameter for each result-type/operand/attribute) for creating
ops, no matter whether we can auto-generate a builder with type-deduction
ability or not.
This CL changes the path for ops that we can auto-generate type-deduction
builders, i.e., with SameOperandsAndResultType/FirstAttrDerivedResultType
traits. Now they are going through a aggregate-parameter builder (i.e.,
requiring one parameter for all result-types/operands/attributes).
attributes.)
It is expected this approach will be more friendly for future shape inference
function autogen and calling those autogen'd shape inference function without
excessive packing and repacking operand/attribute lists.
Also, it would enable better support for creating ops with optional attributes
because we are not required to provide an Attribute() as placeholder for
an optional attribute anymore.
PiperOrigin-RevId: 280654800
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
dialect.
2) Add header files that expose functions to add patterns for the
dialects to SPIR-V lowering, as well as a pass that does the
dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
Since VariableOp is serialized during processBlock, we add two more fields,
`functionHeader` and `functionBody`, to collect instructions for a function.
After all the blocks have been processed, we append them to the `functions`.
Also, fix a bug in processGlobalVariableOp. The global variables should be
encoded into `typesGlobalValues`.
PiperOrigin-RevId: 280105366
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.
In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.
After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.
This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).
PiperOrigin-RevId: 279959463
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972
This makes the generated doc easier to read and it is also
more friendly to certain markdown parsers like kramdown.
Fixestensorflow/mlir#221
PiperOrigin-RevId: 278643469
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.
This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:
* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
all bits unset (i.e., zero). If so handle it specially in all
helper methods.
PiperOrigin-RevId: 277964926
Previously DRR assumes attributes to appear after operands. This was the
previous requirements on ODS, but that has changed some time ago. Fix
DRR to also support interleaved operands and attributes.
PiperOrigin-RevId: 275983485
Otherwise, we'll see the following warning when compiling with GCC 8:
warning: this ?for? clause does not guard... [-Wmisleading-indentation]
PiperOrigin-RevId: 275735925