Commit Graph

26 Commits

Author SHA1 Message Date
Sanjay Patel 41160c2094 [ValueTracking] fix bug computing isKnownToBeAPowerOfTwo() with arithmetic shift right (PR25900)
This is a fix for:
https://llvm.org/bugs/show_bug.cgi?id=25900

If we think that an arithmetic right shift of a power of two is always a power of two, 
an sdiv gets wrongly converted to udiv.

Differential Revision: http://reviews.llvm.org/D15827

llvm-svn: 256655
2015-12-30 22:40:52 +00:00
Chen Li d71999ef1b [gc.statepoint] Change gc.statepoint intrinsic's return type to token type instead of i32 type
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint. 

Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob

Subscribers: reames, mjacob, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D15662

llvm-svn: 256443
2015-12-26 07:54:32 +00:00
Michael Zolotukhin 0c97988e54 [ValueTracking] Properly handle non-sized types in isAligned function.
Reviewers: apilipenko, reames, sanjoy, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D15597

llvm-svn: 256192
2015-12-21 20:38:18 +00:00
Sanjoy Das 1d1929aace [ValueTracking] Use !range metadata more aggressively in KnownBits
Summary:
Teach `computeKnownBitsFromRangeMetadata` to use `!range` metadata more
aggressively.

Reviewers: majnemer, nlewycky, jingyue

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D14100

llvm-svn: 251487
2015-10-28 03:20:15 +00:00
James Molloy 493e57de01 [ValueTracking] Extend r251146 to catch a fairly common case
Even though we may not know the value of the shifter operand, it's possible we know the shifter operand is non-zero. This can allow us to infer more known bits - for example:

  %1 = load %p !range {1, 5}
  %2 = shl %q, %1

We don't know %1, but we do know that it is nonzero so %2[0] is known zero, and importantly %2 is known non-zero.

Calling isKnownNonZero is nontrivially expensive so use an Optional to run it lazily and cache its result.

llvm-svn: 251294
2015-10-26 14:10:46 +00:00
James Molloy 1d88d6f289 [ValueTracking] Add a new predicate: isKnownNonEqual()
isKnownNonEqual(A, B) returns true if it can be determined that A != B.

At the moment it only knows two facts, that a non-wrapping add of nonzero to a value cannot be that value:

A + B != A [where B != 0, addition is nsw or nuw]

and that contradictory known bits imply two values are not equal.

This patch also hooks this up to InstSimplify; InstSimplify had a peephole for the first fact but not the second so this teaches InstSimplify a new trick too (alas no measured performance impact!)

llvm-svn: 251012
2015-10-22 13:18:42 +00:00
James Molloy 897048bee3 [ValueTracking] Teach isKnownNonZero about monotonically increasing PHIs
If a PHI starts at a non-negative constant, monotonically increases
(only adds of a constant are supported at the moment) and that add
does not wrap, then the PHI is known never to be zero.

llvm-svn: 248796
2015-09-29 14:08:45 +00:00
Artur Pilipenko b4d009042b Introduce !align metadata for load instruction
Reviewed By: hfinkel

Differential Revision: http://reviews.llvm.org/D12853

llvm-svn: 248721
2015-09-28 17:41:08 +00:00
James Molloy b6be1ebb7d [ValueTracking] Teach isKnownNonZero a new trick
If the shifter operand is a constant, and all of the bits shifted out
are known to be zero, then if X is known non-zero at least one
non-zero bit must remain.

llvm-svn: 248508
2015-09-24 16:06:32 +00:00
Philip Reames 963febd4f8 Fix for pr24866
Turns out that not every basic block is guaranteed to have a node within the DominatorTree.  This is really hard to trigger, but the test case from the PR managed to do so.  There's active discussion continuing about what documentation and/or invariants needed cleaned up.

llvm-svn: 248216
2015-09-21 22:04:10 +00:00
Artur Pilipenko 84bc62f7a3 Support align attribute for return values
Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D12844

llvm-svn: 247984
2015-09-18 12:33:31 +00:00
Artur Pilipenko 34d8ba84c8 Take alignment into account in isSafeToSpeculativelyExecute and isSafeToLoadUnconditionally.
Reviewed By: hfinkel, sanjoy, MatzeB

Differential Revision: http://reviews.llvm.org/D9791

llvm-svn: 245223
2015-08-17 15:54:26 +00:00
Jingyue Wu 12b0c2835e [ValueTracking] do not overwrite analysis results already computed
Summary:
ValueTracking used to overwrite the analysis results computed from
assumes and dominating conditions. This patch fixes this issue.

Test Plan: test/Analysis/ValueTracking/assume.ll

Reviewers: hfinkel, majnemer

Reviewed By: majnemer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10283

llvm-svn: 239718
2015-06-15 05:46:29 +00:00
Artur Pilipenko 7fad7e57e8 Minor refactoring of GEP handling in isDereferenceablePointer
For GEP instructions isDereferenceablePointer checks that all indices are constant and within bounds. Replace this index calculation logic to a call to accumulateConstantOffset. Separated from the http://reviews.llvm.org/D9791

Reviewed By: sanjoy

Differential Revision: http://reviews.llvm.org/D9874

llvm-svn: 239299
2015-06-08 11:58:13 +00:00
Artur Pilipenko 31619a847e Fix memory-dereferenceable.ll test
One of the testcases introduced by D9365 had incorrect !dereferenceable metadata on load. It must fail but it doesn't due to incorrect order of CHECK/CHECK-NOT commands in test. Fixed both.

Reviewed By: sanjoy

Differential Revision: http://reviews.llvm.org/D9877

llvm-svn: 237897
2015-05-21 12:51:38 +00:00
Sanjoy Das f999547d11 Dereferenceable, dereferenceable_or_null metadata for loads
Summary:
Introduce dereferenceable, dereferenceable_or_null metadata for loads
with the same semantic as corresponding attributes.

This patch depends on http://reviews.llvm.org/D9253

Patch by Artur Pilipenko!

Reviewers: hfinkel, sanjoy, reames

Reviewed By: sanjoy, reames

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9365

llvm-svn: 237720
2015-05-19 20:10:19 +00:00
Sanjoy Das a1d39ba940 [Statepoints] Support for "patchable" statepoints.
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`.  `id` gets propagated to the ID field
in the generated StackMap section.  If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.

This change brings statepoints one step closer to patchpoints.  With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.

PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`.  This can be made more sophisticated
later.

Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9546

llvm-svn: 237214
2015-05-12 23:52:24 +00:00
Pat Gavlin cc0431d1c0 Extend the statepoint intrinsic to allow statepoints to be marked as transitions from GC-aware code to code that is not GC-aware.
This changes the shape of the statepoint intrinsic from:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)

to:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)

This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.

In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.

Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.

Differential Revision: http://reviews.llvm.org/D9501

llvm-svn: 236888
2015-05-08 18:07:42 +00:00
David Blaikie 23af64846f [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
Philip Reames e1bf27045d Require a GC strategy be specified for functions which use gc.statepoint
This was discussed a while back and I left it optional for migration.  Since it's been far more than the 'week or two' that was discussed, time to actually make this manditory.  

llvm-svn: 233357
2015-03-27 05:09:33 +00:00
Sanjoy Das e561fee2a4 [ValueTracking] Fix PR23011.
Summary:
`ComputeNumSignBits` returns incorrect results for `srem` instructions.
This change fixes the issue and adds a test case.

Reviewers: nadav, nicholas, atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8600

llvm-svn: 233225
2015-03-25 22:33:53 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Ramkumar Ramachandra 82ab65c7cd MemDerefPrinter: Require DataLayoutPass for higher accuracy
Without a valid data layout, deferenceable(N) doesn't get parsed or
propagated. Since this is the key item we are testing, add a dependency
on the pass.

Differential Revision: http://reviews.llvm.org/D7508

llvm-svn: 228611
2015-02-09 21:50:03 +00:00
Ramkumar Ramachandra a7343d65f4 isDereferenceablePointer: look through gc.relocate calls
While a theoretical GC might change dereferenceability on collection,
there is no such known collector and no need to account for the case
with a flag yet.

Differential Revision: http://reviews.llvm.org/D7454

llvm-svn: 228606
2015-02-09 21:08:03 +00:00
Ramkumar Ramachandra 8378ac3684 Introduce print-memderefs to test isDereferenceablePointer
Since testing the function indirectly is tricky, introduce a direct
print-memderefs pass, in the same spirit as print-memdeps, which prints
dereferenceability information matched by FileCheck.

Differential Revision: http://reviews.llvm.org/D7075

llvm-svn: 228369
2015-02-06 01:46:42 +00:00