Summary:
Migrate callers to print().
dump() should be useful to downstreams and third parties as a debugging
aid. Everyone trips up on this and creates confusing output.
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D50661
llvm-svn: 339810
Summary:
This change is to support a new fature in clangd, tests will be send toclang-tools-extra with that change.
Unittests are included in: https://reviews.llvm.org/D50449
Reviewers: ilya-biryukov
Reviewed By: ilya-biryukov
Subscribers: ioeric, MaskRay, jkorous, arphaman, cfe-commits
Differential Revision: https://reviews.llvm.org/D50443
llvm-svn: 339540
Implement support for MS-style PCH through headers.
This enables support for /Yc and /Yu where the through header is either
on the command line or included in the source. It replaces the current
support the requires the header also be specified with /FI.
This change adds a -cc1 option -pch-through-header that is used to either
start or stop compilation during PCH create or use.
When creating a PCH, the compilation ends after compilation of the through
header.
When using a PCH, tokens are skipped until after the through header is seen.
Patch By: mikerice
Differential Revision: https://reviews.llvm.org/D46652
llvm-svn: 336379
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
llvm-svn: 331155
This fixes issues with "class" being reported as an identifier in "enum class" because the construct is not present when using default language options.
Patch by Johann Klähn.
llvm-svn: 330159
Summary:
This patch removes IdentifierInfo from completion token after remembering
the identifier in the preprocessor.
Prior to this patch, completion token had the IdentifierInfo set to null when
completing at the start of identifier and to the II for completion prefix
when in the middle of identifier.
This patch unifies how code completion token is handled when it is insterted
before the identifier and in the middle of the identifier.
The actual IdentifierInfo can still be obtained from the Preprocessor.
Reviewers: bkramer, arphaman
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42241
llvm-svn: 323133
Summary:
llvm has grown a WritableMemoryBuffer class, which is convertible
(inherits from) a MemoryBuffer. We can use it to avoid conts_casting the
buffer contents when we want to write to it.
Reviewers: dblaikie, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D41387
llvm-svn: 321167
When a preamble ends in a conditional preprocessor block that is being
skipped, the preprocessor needs to continue skipping that block when
the preamble is used.
This fixes PR34570.
llvm-svn: 317308
This patch implements an extension to the preprocessor:
__VA_OPT__(contents) --> which expands into its contents if variadic arguments are supplied to the parent macro, or behaves as an empty token if none.
- Currently this feature is only enabled for C++2a (this could be enabled, with some careful tweaks, for other dialects with the appropriate extension or compatibility warnings)
- The patch was reviewed here: https://reviews.llvm.org/D35782 and asides from the above (and moving some of the definition and expansion recognition logic into the corresponding state machines), I believe I incorporated all of Richard's suggestions.
A few technicalities (most of which were clarified through private correspondence between rsmith, hubert and thomas) are worth mentioning. Given:
#define F(a,...) a #__VA_OPT__(a ## a) a ## __VA_OPT__(__VA_ARGS__)
- The call F(,) Does not supply any tokens for the variadic arguments and hence VA_OPT behaves as a placeholder.
- When expanding VA_OPT (for e.g. F(,1) token pasting occurs eagerly within its contents if the contents need to be stringified.
- A hash or a hashhash prior to VA_OPT does not inhibit expansion of arguments if they are the first token within VA_OPT.
- When a variadic argument is supplied, argument substitution occurs within the contents as does stringification - and these resulting tokens are inserted back into the macro expansions token stream just prior to the entire stream being rescanned and concatenated.
See wg21.link/P0306 for further details on the feature.
Acknowledgment: This patch would have been poorer if not for Richard Smith's usual thoughtful analysis and feedback.
llvm-svn: 315840
This patch fixes broken preamble-skipping when the preamble region includes a byte order mark (BOM). Previously, parsing would fail if preamble PCH generation was enabled and a BOM was present.
This also fixes preamble invalidation when a BOM appears or disappears. This may seem to be an obscure edge case, but it happens regularly with IDEs that pass buffer overrides that never (or always) have a BOM, yet the underlying file from the initial parse that generated a PCH might (or might not) have a BOM.
I've included a test case for these scenarios.
Differential Revision: https://reviews.llvm.org/D37491
llvm-svn: 313796
Summary:
The crash occurs when the first token after a preamble is a macro
expansion.
Fixed by moving replayPreambleConditionalStack from Parser into
Preprocessor. It is now called right after the predefines file is
processed.
Reviewers: erikjv, bkramer, klimek, yvvan
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D36872
llvm-svn: 311330
The goal of this commit is to fix clang-format so it does not merge tokens when
using the alternative spelling keywords. (eg: "not foo" should not become "notfoo")
The problem is that Preprocessor::HandleIdentifier used to drop the identifier info
from the token for these keyword. This means the first condition of
TokenAnnotator::spaceRequiredBefore is not met. We could add explicit check for
the spelling in that condition, but I think it is better to keep the IdentifierInfo
and handle the operator keyword explicitly when needed. That actually leads to simpler
code, and probably slightly more efficient as well.
Another side effect of this change is that __identifier(and) will now work as
one would expect, removing a FIXME from the MicrosoftExtensions.cpp test
Differential Revision: https://reviews.llvm.org/D35172
llvm-svn: 308008
UBSan found an issue with a nullptr being assigned to a reference.
This was because a following function went back and checked the
identifier in the CPPOperatorName case. This patch corrects that
location with the original logic as well.
llvm-svn: 305128
to support operator keywords used in Windows SDK, alter token type when
seen in system headers
Hello, I submitted D33505 to address this problem, but the
proposal was rejected as too big a hammer.
This change will allow clang to parse the WindowsSDK header <query.h>
which uses the operator name "or" as a field name. Treat cpp operator
keywords as ordinary identifiers inside the Microsoft headers, but
treat them as usual in the user's program.
Original Submitter: Melanie Blower (mibintc)
Differential Revision: https://reviews.llvm.org/D33782
llvm-svn: 305087
Previously, a preamble only included #if blocks (and friends like
ifdef) if there was a corresponding #endif before any declaration or
definition. The problem is that any header file that uses include guards
will not have a preamble generated, which can make code-completion very
slow.
To prevent errors about unbalanced preprocessor conditionals in the
preamble, and unbalanced preprocessor conditionals after a preamble
containing unfinished conditionals, the conditional stack is stored
in the pch file.
This fixes PR26045.
Differential Revision: http://reviews.llvm.org/D15994
llvm-svn: 304207
These pragmas are intended to simulate the effect of entering or leaving a file
with an associated module. This is not completely implemented yet: declarations
between the pragmas will not be attributed to the correct module, but macro
visibility is already functional.
Modules named by #pragma clang module begin must already be known to clang (in
some module map that's either loaded or on the search path).
llvm-svn: 302098
This reverts commit r298185, effectively reapplying r298165, after fixing the
new unit tests (PR32338). The memory buffer generator doesn't null-terminate
the MemoryBuffer it creates; this version of the commit informs getMemBuffer
about that to avoid the assert.
Original commit message follows:
----
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298278
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298165
trying to write out its macro graph, in case we imported a module that added
another module macro between the most recent local definition and the end of
the module.
llvm-svn: 279024
This differs from the previous version by being more careful about template
instantiation/specialization in order to prevent errors when building with
clang -Werror. Specifically:
* begin is not defined in the template and is instead instantiated when Head
is. I think the warning when we don't do that is wrong (PR28815) but for now
at least do it this way to avoid the warning.
* Instead of performing template specializations in LLVM_INSTANTIATE_REGISTRY
instead provide a template definition then do explicit instantiation. No
compiler I've tried has problems with doing it the other way, but strictly
speaking it's not permitted by the C++ standard so better safe than sorry.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 277806
This version has two fixes compared to the original:
* In Registry.h the template static members are instantiated before they are
used, as clang gives an error if you do it the other way around.
* The use of the Registry template in clang-tidy is updated in the same way as
has been done everywhere else.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 276973
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
Differential Revision: http://reviews.llvm.org/D21385
llvm-svn: 276856
option. Previously these options could both be used to specify that you were
compiling the implementation file of a module, with a different set of minor
bugs in each case.
This change removes -fmodule-implementation-of, and instead tracks a flag to
determine whether we're currently building a module. -fmodule-name now behaves
the same way that -fmodule-implementation-of previously did.
llvm-svn: 261372
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
* adds -aux-triple option to specify target triple
* propagates aux target info to AST context and Preprocessor
* pulls in target specific preprocessor macros.
* pulls in target-specific builtins from aux target.
* sets appropriate host or device attribute on builtins.
Differential Revision: http://reviews.llvm.org/D12917
llvm-svn: 248299
So, iterate over the list of macros mentioned in modules, and make sure those
are in the master table.
This isn't particularly efficient, but hopefully it's something that isn't
done too often.
PR23929 and rdar://problem/21480635
llvm-svn: 240571
visibility is enabled) or leave and re-enter it, restore the macro and module
visibility state from last time we were in that submodule.
This allows mutually-#including header files to stand a chance at being
modularized with local visibility enabled.
llvm-svn: 237871
This, in preparation for the introduction of more new keywords in the
implementation of the C++ language, generalizes the support for future keyword
compat diagnostics (e.g., diag::warn_cxx11_keyword) by extending the
applicability of the relevant property in IdentifierTable with appropriate
renaming.
Patch by Hubert Tong!
llvm-svn: 237332