This adds a combine for extract(x, n); extract(x, n+1) ->
VMOVRRD(extract x, n/2). This allows two vector lanes to be moved at the
same time in a single instruction, and thanks to the other VMOVRRD folds
we have added recently can help reduce the amount of executed
instructions. Floating point types are very similar, but will include a
bitcast to an integer type.
This also adds a shouldRewriteCopySrc, to prevent copy propagation from
DPR to SPR, which can break as not all DPR regs can be extracted from
directly. Otherwise the machine verifier is unhappy.
Differential Revision: https://reviews.llvm.org/D100244
MVE has native reductions for integer add and min/max. The others need
to be expanded to a series of extract's and scalar operators to reduce
the vector into a single scalar. The default codegen for that expands
the reduction into a series of in-order operations.
This modifies that to something more suitable for MVE. The basic idea is
to use vector operations until there are 4 remaining items then switch
to pairwise operations. For example a v8f16 fadd reduction would become:
Y = VREV X
Z = ADD(X, Y)
z0 = Z[0] + Z[1]
z1 = Z[2] + Z[3]
return z0 + z1
The awkwardness (there is always some) comes in from something like a
v4f16, which is first legalized by adding identity values to the extra
lanes of the reduction, and which can then not be optimized away through
the vrev; fadd combo, the inserts remain. I've made sure they custom
lower so that we can produce the pairwise additions before the extra
values are added.
Differential Revision: https://reviews.llvm.org/D81397