This adds some simple known bits handling for the three CSINC/NEG/INV
instructions. From the operands known bits we can compute the common
bits of the first operand and incremented/negated/inverted second
operand. The first, especially CSINC ZR, ZR, comes up fair amount in the
tests. The others are more rare so a unit test for them is added.
Differential Revision: https://reviews.llvm.org/D97788
This patch adds tablegen patterns for pairs of i16/f16 insert/extracts.
If we are inserting into two adjacent vector lanes (0 and 1 for
example), we can use either a vmov;vins or vmovx;vins to insert the pair
together, avoiding a round-trip from GRP registers. This is quite a
large patterns with a number of EXTRACT_SUBREG/INSERT_SUBREG/
COPY_TO_REGCLASS nodes, but hopefully as most of those become copies all
that will be cleaned up by further optimizations.
The VINS pattern was also adjusted to allow it to represent that it is
inserting into the top half of an existing register.
Differential Revision: https://reviews.llvm.org/D95381
Until fairly recently the calling convention for IR half was not handled
correctly in the ARM backend, meaning we needed to pass pointers that
were loaded/stored. Now that that is fixed we can switch to using the
type directly instead.
Much like the similar combine added recently for VMOVrh load, this
adds a fold for VMOVhr load turning it into a vldr.f16 as opposed to a
vldrh and vmov.f16.
Differential Revision: https://reviews.llvm.org/D78714
If we get into the situation where we are extracting from a VDUP, the
extracted value is just the origin, so long as the types match or we can
bitcast between the two.
Differential Revision: https://reviews.llvm.org/D78708
The idea, under MVE, is to introduce more bitcasts around VDUP's in an
attempt to get the type correct across basic block boundaries. In order
to do that without other regressions we need a few fixups, of which this
is the first. If the code is a bitcast of a VDUP, we can convert that
straight into a VDUP of the new type, so long as they have the same
size.
Differential Revision: https://reviews.llvm.org/D78706
This patch makes the folding of or(A, B) into not(and(not(A), not(B)))
more agressive for I1 vector. This only affects Thumb2 MVE and improves
codegen, because it removes a lot of msr/mrs instructions on VPR.P0.
This patch also adds a xor(vcmp) -> !vcmp fold for MVE.
Differential Revision: https://reviews.llvm.org/D77202
This patch adds an implementation of PerformVSELECTCombine in the
ARM DAG Combiner that transforms vselect(not(cond), lhs, rhs) into
vselect(cond, rhs, lhs).
Normally, this should be done by the target-independent DAG Combiner,
but it doesn't handle the kind of constants that we generate, so we
have to reimplement it here.
Differential Revision: https://reviews.llvm.org/D77712
This adds a simple fold to combine VMOVrh load to a integer load.
Similar to what is already performed for BITCAST, but needs to account
for the types being of different sizes, creating an zero extending load.
Differential Revision: https://reviews.llvm.org/D76485
The MVE VDUP instruction take a GPR and splats into every lane of a
vector register. Unlike NEON we do not have a VDUPLANE equivalent
instruction, doing the same splat from a fp register. Previously a VDUP
to a v4f32/v8f16 would be represented as a (v4f32 VDUP f32), which
would mean the instruction pattern needs to add a COPY_TO_REGCLASS to
the GPR.
Instead this now converts that earlier during an ISel DAG combine,
converting (VDUP x) to (VDUP (bitcast x)). This can allow instruction
selection to tell that the input needs to be an i32, which in one of the
testcases allows it to use ldr (or specifically ldm) over (vldr;vmov).
Whilst being simple enough for floats, as the types sizes are the same,
these is no BITCAST equivalent for getting a half into a i32. This uses
a VMOVrh ARMISD node, which doesn't know the same tricks yet.
Differential Revision: https://reviews.llvm.org/D76292
Summary:
As well as vector/vector compare instructions, MVE also has a family
of comparisons taking a vector and a scalar, which compare every lane
of the vector against the same value. We generate those at isel time
using isel patterns that match `(ARMvcmp vector, (ARMvdup scalar))`.
This commit adds corresponding patterns for the operand-reversed form
`(ARMvcmp (ARMvdup scalar), vector)`, with condition codes swapped as
necessary. That way, we can still generate the vector/scalar compare
instruction if the IR happens to have been rearranged to put the
operands the other way round, which can happen in some optimization
phases. Previously, a vcmp the other way round was handled by emitting
a `vdup` instruction to //explicitly// replicate the scalar input into
a vector, and then doing a vector/vector comparison.
I haven't added a new test, because it turned out that several
existing tests were already exhibiting that failure mode. So just
updating the expected output in the existing MVE codegen tests
demonstrates what's been improved.
Reviewers: ostannard, MarkMurrayARM, dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70296
Based on the discussion in
http://lists.llvm.org/pipermail/llvm-dev/2019-October/135574.html, the
conclusion was reached that the ARM backend should produce vcmp instead
of vcmpe instructions by default, i.e. not be producing an Invalid
Operation exception when either arguments in a floating point compare
are quiet NaNs.
In the future, after constrained floating point intrinsics for floating
point compare have been introduced, vcmpe instructions probably should
be produced for those intrinsics - depending on the exact semantics
they'll be defined to have.
This patch logically consists of the following parts:
- Revert http://llvm.org/viewvc/llvm-project?rev=294945&view=rev and
http://llvm.org/viewvc/llvm-project?rev=294968&view=rev, which
implemented fine-tuning for when to produce vcmpe (i.e. not do it for
equality comparisons). The complexity introduced by those patches
isn't needed anymore if we just always produce vcmp instead. Maybe
these patches need to be reintroduced again once support is needed to
map potential LLVM-IR constrained floating point compare intrinsics to
the ARM instruction set.
- Simply select vcmp, instead of vcmpe, see simple changes in
lib/Target/ARM/ARMInstrVFP.td
- Adapt lots of tests that tested for vcmpe (instead of vcmp). For all
of these test, the intent of what is tested for isn't related to
whether the vcmp should produce an Invalid Operation exception or not.
Fixes PR43374.
Differential Revision: https://reviews.llvm.org/D68463
llvm-svn: 374025
MVE has VPT instructions, which perform the duties of both a VCMP and a VPST in
a single instruction, performing the compare and starting the VPT block in one.
This teaches the MVEVPTBlockPass to fold them, searching back through the
basicblock for a valid VCMP and creating the VPT from its operands.
There are some changes to the VPT instructions to accommodate this, altering
the order of the operands to match the VCMP better, and changing P0 register
defs to be VPR defs, as is used in other places.
Differential Revision: https://reviews.llvm.org/D66577
llvm-svn: 371982
The code here seems to date back to r134705, when tablegen lowering was first
being added. I don't believe that we need to include CPSR implicit operands on
the MCInst. This now works more like other backends (like AArch64), where all
implicit registers are skipped.
This allows the AliasInst for CSEL's to match correctly, as can be seen in the
test changes.
Differential revision: https://reviews.llvm.org/D66703
llvm-svn: 370745
Arm 8.1-M adds a number of related CSEL instructions, including CSINC, CSNEG and CSINV. These choose between two values given the content in CPSR and a condition, performing an increment, negation or inverse of the false value.
This adds some selection for them, either from constant values or patterns. It does not include CSEL directly, which is currently not always making code better. It is still useful, but we will have to check more carefully where it should and shouldn't be used.
Code by Ranjeet Singh and Simon Tatham, with some modifications from me.
Differential revision: https://reviews.llvm.org/D66483
llvm-svn: 370739
This adds fp16 VMOVX patterns, using the same patterns as rL362482 with some
adjustments for MVE. It allows us to move fp16 registers without going into and
out of gprs.
VMOVX is able to move the top bits from a fp16 in a fp reg into the bottom bits
of another register, zeroing the rest. This can be used for odd MVE register
lanes. The top bits are not read by fp16 instructions, so no move is required
there if we are dealing with even lanes.
Differential revision: https://reviews.llvm.org/D66793
llvm-svn: 370184
This adds the patterns required to transform xor P0, -1 to a VPNOT. The
instruction operands have to change a little for this, adding an in and an out
VCCR reg and using a custom DecodeMVEVPNOT for the decode.
Differential Revision: https://reviews.llvm.org/D65133
llvm-svn: 367192
MVE VCMP instructions can use a general purpose register as the second operand.
This adds the combines for it, selecting from a compare of a vdup.
Differential Revision: https://reviews.llvm.org/D65061
llvm-svn: 366924