Summary:
This is step towards separating the GCN and R600 tablegen'd code.
This is a little awkward for now, because the R600 functions won't have the
MCSubtargetInfo parameter, so we need to have AMDMGPUInstPrinter
delegate to R600InstPrinter, but once the tablegen'd code is split,
we will be able to drop the delegation and use R600InstPrinter directly.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D36444
llvm-svn: 311128
Intrinsic already existed for llvm.SI.tbuffer.store
Needed tbuffer.load and also re-implementing the intrinsic as llvm.amdgcn.tbuffer.*
Added CodeGen tests for the 2 new variants added.
Left the original llvm.SI.tbuffer.store implementation to avoid issues with existing code
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr
Differential Revision: https://reviews.llvm.org/D30687
llvm-svn: 306031
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
- corrected DS_GWS_* opcodes (see VI_Shader_Programming#16.pdf for detailed description)
- address operand is not used
- several opcodes have data operand
- all opcodes have offset modifier
- DS_AND_SRC2_B32: corrected typo in mnemo
- DS_WRAP_RTN_F32 replaced with DS_WRAP_RTN_B32
- added CI/VI opcodes:
- DS_CONDXCHG32_RTN_B64
- DS_GWS_SEMA_RELEASE_ALL
- added VI opcodes:
- DS_CONSUME
- DS_APPEND
- DS_ORDERED_COUNT
Differential Revision: https://reviews.llvm.org/D31707
llvm-svn: 299767
Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.
Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.
The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.
llvm-svn: 289306
Fixes Bug 30808.
Note that passing subtarget information to predicates seems too complicated, so gfx8-specific def smrd_offset_20 introduced.
Old gfx6/7-specific def renamed to smrd_offset_8 for clarity.
Lit tests updated.
Differential Revision: https://reviews.llvm.org/D26085
llvm-svn: 285590
- Refactor bit packing/unpacking
- Calculate bit mask given bit shift and bit width
- Introduce function for decoding bits of waitcnt
- Introduce function for encoding bits of waitcnt
- Introduce function for getting waitcnt mask (instead of using bare numbers)
- Introduce function fot getting max waitcnt(s) (instead of using bare numbers)
Differential Revision: https://reviews.llvm.org/D25298
llvm-svn: 283919
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
Registers are printed a lot, so don't create temporary
std::strings. Using char instead of a string to an ostream
saves a function call.
llvm-svn: 274581
Summary:
sext() modifier is supported in SDWA instructions only for integer operands. Spec is unclear should integer operands support abs and neg modifiers with sext - for now they are not supported.
Renamed InputModsWithNoDefault to FloatInputMods. Added SextInputMods for operands that support sext() modifier.
Added AMDGPUOperand::Modifier struct to handle register and immediate modifiers.
Code cleaning in AMDGPUOperand class: organize method in groups (render-, predicate-methods...).
Reviewers: vpykhtin, artem.tamazov, tstellarAMD
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D20968
llvm-svn: 272384
Hwreg(...) syntax implementation unified with sendmsg(...).
Common strings moved to Utils
MathExtras.h functionality utilized.
Added missing build dependency in Disassembler.
Differential Revision: http://reviews.llvm.org/D20381
llvm-svn: 270871
Added support for sendmsg(MSG[, OP[, STREAM_ID]]) syntax
in s_sendmsg and s_sendmsghalt instructions.
The syntax matches the SP3 assembler/disassembler rules.
That is why implicit inputs (like M0 and EXEC) are not printed
to disassembly output anymore.
sendmsg(...) allows only known message types and attributes,
even if literals are used instead of symbolic names.
However, raw literal (without "sendmsg") still can be used,
and that allows for any 16-bit value.
Tests updated/added.
Differential Revision: http://reviews.llvm.org/D19596
llvm-svn: 268762
Summary:
The goal is for each operand type to have its own parse function and
at the same time share common code for tracking state as different
instruction types share operand types (e.g. glc/glc_flat, etc).
Introduce parseAMDGPUOperand which can parse any optional operand.
DPP and Clamp/OMod have custom handling for now. Sam also suggested
to have class hierarchy for operand types instead of table. This
can be done in separate change.
Remove parseVOP3OptionalOps, parseDS*OptionalOps, parseFlatOptionalOps,
parseMubufOptionalOps, parseDPPOptionalOps.
Reduce number of definitions of AsmOperand's and MatchClasses' by using common base class.
Rename AsmMatcher/InstPrinter methods accordingly.
Print immediate type when printing parsed immediate operand.
Use 'off' if offset/index register is unused instead of skipping it to make it more readable (also agreed with SP3).
Update tests.
Reviewers: tstellarAMD, SamWot, artem.tamazov
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19584
llvm-svn: 268015
Added support of TTMP quads.
Reworked M0 exclusion machinery for SMRD and similar instructions
to enable usage of TTMP registers in those instructions as destinations.
Tests added.
Differential Revision: http://reviews.llvm.org/D19342
llvm-svn: 267733
Possibility to specify code of hardware register kept.
Disassemble to symbolic name, if name is known.
Tests updated/added.
Differential Revision: http://reviews.llvm.org/D19335
llvm-svn: 267724
Support for SDWA instructions for VOP1 and VOP2 encoding.
Not done yet:
- converters for support optional operands and modifiers
- VOPC
- sext() modifier
- intrinsics
- VOP2b (see vop_dpp.s)
- V_MAC_F32 (see vop_dpp.s)
Differential Revision: http://reviews.llvm.org/D19360
llvm-svn: 267553
Tests added along with implemented feature.
Note that there is a small leftover of unecessary MI sheduling issue
(more info in the review). CodeGen/AMDGPU/salu-to-valu.ll updated to fix
the false regression.
TODO: Support for TTMP quads, comma-separated syntax in "[]" and more.
Differential Revision: http://reviews.llvm.org/D17825
llvm-svn: 266205
Supprot DPP syntax as used in SP3 (except several operands syntax).
Added dpp-specific operands in td-files.
Added DPP flag to TSFlags to determine if instruction is dpp in InstPrinter.
Support for VOP2 DPP instructions in td-files.
Some tests for DPP instructions.
ToDo:
- VOP2bInst:
- vcc is considered as operand
- AsmMatcher doesn't apply mnemonic aliases when parsing operands
- v_mac_f32
- v_nop
- disable instructions with 64-bit operands
- change dpp_ctrl assembler representation to conform sp3
Review: http://reviews.llvm.org/D17804
llvm-svn: 263008