This combined match/rewrite functionality allows simplifying the majority of existing RewritePatterns, as they do not benefit from separate match and rewrite functions.
Some of the existing canonicalization patterns in StandardOps have been modified to take advantage of this functionality.
PiperOrigin-RevId: 240187856
Previously we have multiple mechanisms to specify op definition and match constraints:
TypeConstraint, AttributeConstraint, Type, Attr, mAttr, mAttrAnyOf, mPat. These variants
are not added because there are so many distinct cases we need to model; essentially,
they are all carrying a predicate. It's just an artifact of implementation.
It's quite confusing for users to grasp these variants and choose among them. Instead,
as the OpBase TableGen file, we need to strike to provide an unified mechanism. Each
dialect has the flexibility to define its own aliases if wanted.
This CL removes mAttr, mAttrAnyOf, mPat. A new base class, Constraint, is added. Now
TypeConstraint and AttrConstraint derive from Constraint. Type and Attr further derive
from TypeConstraint and AttrConstraint, respectively.
Comments are revised and examples are added to make it clear how to use constraints.
PiperOrigin-RevId: 240125076
Dialect implementer are expected to inherit from this class when implementing their types. It does not seems right when using MLIR "from the outside" to use directly something from `mlir::detail::`.
PiperOrigin-RevId: 240075769
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
This should probably be changed to instead use the negated form (e.g., get predicate + negate it + get resulting template), but this fixes it locally.
PiperOrigin-RevId: 240067116
Using global constructors should not be mandatory when possible, clients should be able to register a dialect explicitly when they want.
PiperOrigin-RevId: 240064244
We just need a way to unpack ArrayRef<ValueHandle> to ArrayRef<Value*>.
No need to expose this to the user.
This reduces the cognitive overhead for the tutorial.
PiperOrigin-RevId: 240037425
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
Enable users specifying operand type constraint combinations (e.g., considering multiple operands). Some of these will be refactored (particularly the OpBase change and that should also not be needed to be done by most users), but the focus is more on user side (shown in test). The generated code for this does not take any known facts into account or perform any simplification.
Start with 2 primities to specify 1) whether an operand has a specific element type, and 2) whether an operand's element type matches another operands element type.
PiperOrigin-RevId: 239875712
This CL revisits the composition of AffineApplyOp for the special case where a symbol
itself comes from an AffineApplyOp.
This is achieved by rewriting such symbols into dims to allow composition to occur mathematically.
The implementation is also refactored to improve readability.
Rationale for locally rewriting symbols as dims:
================================================
The mathematical composition of AffineMap must always concatenate symbols
because it does not have enough information to do otherwise. For example,
composing `(d0)[s0] -> (d0 + s0)` with itself must produce
`(d0)[s0, s1] -> (d0 + s0 + s1)`.
The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when
applied to the same mlir::Value* for both s0 and s1.
As a consequence mathematical composition of AffineMap always concatenates
symbols.
When AffineMaps are used in AffineApplyOp however, they may specify
composition via symbols, which is ambiguous mathematically. This corner case
is handled by locally rewriting such symbols that come from AffineApplyOp
into dims and composing through dims.
PiperOrigin-RevId: 239791597
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
This allows the indexing sugar to just work naturally with other type of load and store ops than the affine ones we currently have.
This is needed for the EuroLLVM tutorial.
PiperOrigin-RevId: 239602257
This is useful when developing one or multiple dialects in a private context without having to register them with MLIR Core.
PiperOrigin-RevId: 239601844