Old algorithm:
1. See if the name looks like a getter or setter.
2. Use the name to look up a property in the current ObjCContainer
and all its protocols.
3. If the current container is an interface, also look in all categories
and superclasses (and superclass categories, and so on).
New algorithm:
1. See if the method is marked as a property accessor. If so, look through
all properties in the current container and find one that has a matching
selector.
2. Find all overrides of the method using ObjCMethodDecl's
getOverriddenMethods. This collects methods in superclasses and protocols
(as well as superclass categories, which isn't really necessary), and
checks if THEY are accessors. This part is not done recursively, since
getOverriddenMethods is already recursive.
This lets us handle getters and setters that do not match the property
names.
llvm-svn: 165627
This more accurately reflects its use: this flag is set when a method
matches the getter or setter name for a property in the same class,
and does not actually specify whether or not the definition of the method
will be synthesized (either implicitly or explicitly with @synthesize).
This renames the setter and backing field as well, and changes the
(soon-to-be-obsolete?) XML dump format to use 'property_accessor'
instead of 'synthesized'.
llvm-svn: 165626
write out the macro history for that macro. Similarly, we need to cope
with reading a macro definition that has been #undef'd.
Take advantage of this new ability so that global code-completion
results can refer to #undef'd macros, rather than losing them
entirely. For multiply defined/#undef'd macros, we will still get the
wrong result, but it's better than getting no result.
llvm-svn: 165502
This appears to be consistent with GCC's implementation of the same warning
under -Wparentheses. Suppressing a << b + c for cases where 'a' is a user
defined type for compatibility with C++ stream IO. Otherwise suggest
parentheses around the addition or subtraction subexpression.
(this came up when MSVC was complaining (incorrectly, so far as I can tell)
about a perceived violation of this within the LLVM codebase, PR14001)
llvm-svn: 165283
a non-inline namespace, then reopens it as inline to try to add its symbols to
the surrounding namespace. In this one special case, permit the namespace to be
reopened as inline, and patch up the name lookup tables to match.
llvm-svn: 165263
For GNU attributes, instead of reusing attribute source
location for the scope location, use SourceLocation() since
GNU attributes don not have scope tokens.
llvm-svn: 165234
- General C++11 attributes were previously parsed and ignored. Now they are parsed and stored in AST.
- Add support to parse arguments of attributes that in 'gnu' namespace.
- Differentiate unknown attributes and known attributes that can't be applied to statements when emitting diagnostic.
llvm-svn: 165082
Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
Also applies to -Wnonnull, -Wtype-safety, and -Wnon-pod-varargs.
All of these can be better checked at instantiation time.
This change does not actually affect regular CallExpr function calls,
since the checks there only happen after overload resolution.
However, it will affect Objective-C method calls.
<rdar://problem/12373934>
llvm-svn: 164984
-Allow Sema to do more processing on the initial Expr before checking it.
-Remove the special conditions in HandleExpr()
-Move the code so that only one call site is needed.
-Removed the function from Sema and only call it locally.
-Warn on potentially evaluated reference variables, not just casts to r-values.
-Update tests.
llvm-svn: 164951
Summary:
When issuing a diagnostic message for the -Wimplicit-fallthrough diagnostics, always try to find the latest macro, defined at the point of fallthrough, which is immediately expanded to "[[clang::fallthrough]]", and use it's name instead of the actual sequence.
Known issues:
* uses PP.getSpelling() to compare macro definition with a string (anyone can suggest a convenient way to fill a token array, or maybe lex it in runtime?);
* this can be generalized and used in other similar cases, any ideas where it should reside then?
Reviewers: doug.gregor, rsmith
Reviewed By: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D50
llvm-svn: 164858
New output:
warning: weak property may be unpredictably set to nil
note: property declared here
note: assign the value to a strong variable to keep the object alive
during use
<rdar://problem/12277204>
llvm-svn: 164857
The infrastructure for -Warc-repeated-use-of-weak got a little too heavy
to leave sitting at the top of Sema.cpp.
No functionality change.
llvm-svn: 164856
Like properties, loading from a weak ivar twice in the same function can
give you inconsistent results if the object is deallocated between the
two loads. It is safer to assign to a strong local variable and use that.
Second half of <rdar://problem/12280249>.
llvm-svn: 164855
The motivating example:
if (self.weakProp)
use(self.weakProp);
As with any non-atomic test-then-use, it is possible a weak property to be
non-nil at the 'if', but be deallocated by the time it is used. The correct
way to write this example is as follows:
id tmp = self.weakProp;
if (tmp)
use(tmp);
The warning is controlled by -Warc-repeated-use-of-receiver, and uses the
property name and base to determine if the same property on the same object
is being accessed multiple times. In cases where the base is more
complicated than just a single Decl (e.g. 'foo.bar.weakProp'), it picks a
Decl for some degree of uniquing and reports the problem under a subflag,
-Warc-maybe-repeated-use-of-receiver. This gives a way to tune the
aggressiveness of the warning for a particular project.
The warning is not on by default because it is not flow-sensitive and thus
may have a higher-than-acceptable rate of false positives, though it is
less noisy than -Wreceiver-is-weak. On the other hand, it will not warn
about some cases that may be legitimate issues that -Wreceiver-is-weak
will catch, and it does not attempt to reason about methods returning weak
values.
Even though this is not a real "analysis-based" check I've put the bug
emission code in AnalysisBasedWarnings for two reasons: (1) to run on
every kind of code body (function, method, block, or lambda), and (2) to
suggest that it may be enhanced by flow-sensitive analysis in the future.
The second (smaller) half of this work is to extend it to weak locals
and weak ivars. This should use most of the same infrastructure.
Part of <rdar://problem/12280249>
llvm-svn: 164854
This checker is annotation driven. It checks that the annotated
invalidation method accesses all ivars of the enclosing objects that are
objects of type, which in turn contains an invalidation method.
This is driven by
__attribute((annotation("objc_instance_variable_invalidator")).
llvm-svn: 164716
where an attribute is attached to a forward declaration of a template function,
and refers to parameters of that declaration, but is then inherited by the
definition of that function. When the definition is instantiated, the
parameter references need to be remapped.
llvm-svn: 164710
typeid (and a couple other non-standard places where we can transform an
unevaluated expression into an evaluated expression) is special
because it introduces an an expression evaluation context,
which conflicts with the mechanism to compute the current
lambda mangling context. PR12123.
I would appreciate if someone would double-check that we get the mangling
correct with this patch.
llvm-svn: 164658
enough information so we can mangle them correctly in cases involving
dependent parameter types. (This specifically impacts cases involving
null pointers and cases involving parameters of reference type.)
Fix the mangler to use this information instead of trying to scavenge
it out of the parameter declaration.
<rdar://problem/12296776>.
llvm-svn: 164656
If an MS-style inline asm is matched to multiple instructions, e.g., with a
a WAIT-prefix, then we need to examine the operands of the last instruction
instruction, not the prefix instruction.
llvm-svn: 164608
into the enclosing scope; this is a more accurate model but is
(I believe) unnecessary in my test case due to other flaws.
However, one of those flaws is now intentional: blocks which
appear in return statements can be trivially observed to not
extend in lifetime past the return, and so we can allow a jump
past them. Do the necessary magic in IR-generation to make
this work.
llvm-svn: 164589
function being instantiated. An error recovery codepath was recursively
performing name lookup (and triggering an unbounded stack of template
instantiations which blew out the stack before hitting the depth limit).
Patch by Wei Pan!
llvm-svn: 164586
This makes the wording more informative, and consistent with the other
warnings about uninitialized variables.
Also, me and David who reviewed this couldn't figure out why we would
need to do a lookup to get the name of the variable; so just print the
name directly.
llvm-svn: 164366
but can be dereferenced to form an expression which does have viable begin/end
functions, then typo-correct the range, even if something else goes wrong with
the statement (such as inaccessible begin/end or the wrong type of loop
variable).
In order to ensure we recover correctly and produce any followup diagnostics in
this case, redo semantic analysis on the for-range statement outside of the
diagnostic trap, after issuing the typo-correction.
llvm-svn: 164323
This is some really old code (took me a while to find the test cases) & the
diagnostic text is slightly incorrect (it should really only apply to
re/declarations/, redefinitions are an error regardless of whether the types
match). Not sure if anyone cares about it, though.
For now this just makes the diagnostic more clear in less obvious cases where
the type of a declaration might not be explicitly written (eg: because it
uses decltype)
llvm-svn: 164313
definition info; it needs to be there because the mangler needs to
access it before we're finished defining the lambda class.
PR12808.
llvm-svn: 164186
This makes Clang warn about self references in in-class initializers,
for example:
struct S {
int a = a + 42;
};
This basically just moves UninitializedFieldVisitor up a bit in
SemaDeclCXX.cpp, and adds a call to it from ActOnCXXInClassMemberInitializer.
llvm-svn: 164131
is no compelling argument that this is a generally useful warning,
and imposes a strong stylistic argument on code beyond what it was
intended to find warnings in.
llvm-svn: 164083
Retain cycles happen in the case where a block is persisted past its
life on the stack, and the way that occurs is by copying the block.
We should thus look through any explicit copies we see.
Note that Block_copy is actually a type-safe wrapper for _Block_copy,
which does all the real work.
<rdar://problem/12219663>
llvm-svn: 164039
Specifically, this should warn:
__block block_t a = ^{ a(); };
Furthermore, this case which previously warned now does not, since the value
of 'b' is captured before the assignment occurs:
block_t b; // not __block
b = ^{ b(); };
(This will of course warn under -Wuninitialized, as before.)
<rdar://problem/11015883>
llvm-svn: 163962
type checking for non-static data member initializers in a dependent
class, because our ASTs lose too much information to when
type-checking an initializer. Fixes <rdar://problem/11974632>,
although the result is still rather unsatisfactory.
llvm-svn: 163871
TypeSourceInfo, we may have lost some adjustments made to the type of
that function due to declaration merging. Adjust the resulting type
correspondingly. Fixes PR12948 / <rdar://problem/11552434>.
llvm-svn: 163845
integral promotions to both its underlying type and to its underlying type's
promoted type. This matters now that boolean conversions aren't permitted in
converted constant expressions (a la DR1407): an enumerator with a fixed
underlying type of bool still can be.
llvm-svn: 163841
warning to an error. C++ bans it, and both GCC and EDG diagnose it as
an error. Microsoft allows it, so we still warn in Microsoft
mode. Fixes <rdar://problem/11135644>.
llvm-svn: 163831
passing -fretain-comments-from-system-headers. By default, the
compiler no longer parses such documentation comments, as they
can result in a noticeable compile time/PCH slowdown.
Fixes <rdar://problem/11860820>.
llvm-svn: 163778
more robust way to address a few FIXMEs.
The initial implementation, r163342, built the IR asm string and then tried to
patch things on the fly without enough context. Specifically, it didn't skip
mnemonics nor did it track with assembly instruction an expression was related
to. The new implementation patches the operands and then builds the final
IR string.
llvm-svn: 163756
MCOperands then iterate over all of then when computing clobbers, inputs and
outputs.
On x86 the 1-to-many mapping is a memory operand that includes a BaseReg(reg),
MemScale(imm), MemIndexReg(reg), an Expr(MCExpr or imm) and a MemSegReg(reg).
Invalid register (Op.getReg() == 0) are not considered when computing clobber.
llvm-svn: 163728
A couple of missing "RequireNonAbstractType" calls in conditional operator
handling. I looked for opportunities to tie this check in to all relevant
callers of PerformCopyInitialization (couldn't be all callers since this is
called for base subobject copying too, where it's acceptable to copy abstract
types) but the callers varied too much & in many cases had substantial code
or conditionals on the RequireNonAbstractType call, the
PerformCopyInitialization call, or the code between the two calls.
llvm-svn: 163555
analysis that may give false positives because it is confused by aliasing, and
a less precise analysis that has fewer false positives, but may have false
negatives. The more precise warnings are enabled by -Wthread-safety-precise.
An additional note clarify the warnings in the precise case.
llvm-svn: 163537
in classes. Use it to flag those method implementations which don't
contain call to 'super' if they have 'super' class and it has the method
with this attribute set. This is wip. // rdar://6386358
llvm-svn: 163434
unexpanded parameter pack is a pack expansion. Thus, as with a non-type template
parameter which is a pack expansion, it needs to be expanded early into a fixed
list of template parameters.
Since the expanded list of template parameters is not itself a parameter pack,
it is permitted to appear before the end of the template parameter list, so also
remove that restriction (for both template template parameter pack expansions and
non-type template parameter pack expansions).
llvm-svn: 163369
These types are defined differently on 32-bit and 64-bit platforms, and
trying to offer a fixit for one platform would only mess up the format
string for the other. The Apple-recommended solution is to cast to a type
that is known to be large enough and always use that to print the value.
This should only have an impact on compile time if the format string is
incorrect; in cases where the format string matches the definition on the
current platform, no warning will be emitted.
<rdar://problem/9135072&12164284>
llvm-svn: 163266
of a c-function for what it is. Otherwise, this func
is treated as an overloadable c-function resulting in
a crash much later. // rdar://11743706
llvm-svn: 163224
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
initiated enum constant has the same value as another enum constant.
For instance:
enum test { A, B, C = -1, D, E = 1 };
Clang will warn that:
A and D both have value 0
B and E both have value 1
A few exceptions are made to keep the noise down. Enum constants which are
initialized to another enum constant, or an enum constant plus or minus 1 will
not trigger this warning. Also, anonymous enums are not checked.
llvm-svn: 162938
__objc_yes/__objc_no to (BOOL)1/(BOOL)0 when
BOOL is declared; otherwise it resorts to
default of 'signed char'. This is important to
selecting the correct Numeric API numberWithBool:
Can't have a clang test for this. Will checkin and
executable llvm test. // rdar://12156616
llvm-svn: 162922
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
and when used in property type declaration, is handled as type
attribute. Do not issue the warning when declaraing the property.
// rdar://12173491
llvm-svn: 162801
variables without a storage class within a function, to implement
CUDA B.2.5: "__shared__ and __constant__ variables have implied static
storage [duration]."
llvm-svn: 162788
This warns in two specific situations:
1) For potentially swapped function arguments, e.g.
void foo(bool, float);
foo(1.7, false);
2) Misplaced brackets around function call arguments, e.g.
bool InRange = fabs(a - b < delta);
Where the last argument in a function call is implicitly converted
from bool to float, and the function returns a float which gets
implicitly converted to bool.
Patch by Andreas Eckleder!
llvm-svn: 162763
make sure we walk up the DC chain for the current context,
rather than allowing ourselves to get switched over to the
canonical DC chain. Fixes PR13642.
llvm-svn: 162616
CodeGen option to a LangOpt option. In turn, hoist the guard into the parser
so that we avoid the new (and fairly unstable) Sema/AST/CodeGen logic. This
should restore the behavior of clang to that prior to r158325.
<rdar://problem/12163681>
llvm-svn: 162602
Add a new static function, buildMSAsmPieces, that will break these strings down
into mnemonic and operands. Upon a match failure, the idea is to use the
ErrorInfo from MatchInstructionImpl to inspect the mnemonic/operand and
decide a course of action. Unfortunately, there's no easy way to test this at
the moment.
llvm-svn: 162321
class extensions a little. clang now allows readonly property
with no ownership rule (assign, unsafe_unretained, weak, retain,
strong, or copy) with a readwrite property with an ownership rule.
// rdar://12103400
llvm-svn: 162319
diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
The old error message stating that 'begin' was an undeclared identifier
is replaced with a new message explaining that the error is in the range
expression, along with which of the begin() and end() functions was
problematic if relevant.
Additionally, if the range was a pointer type or defines operator*,
attempt to dereference the range, and offer a FixIt if the modified range
works.
llvm-svn: 162248
First, when synthesizing an explicitly strong/retain/copy property
of Class type, don't pretend during compatibility checking that the
property is actually assign. Instead, resolve incompatibilities
by secretly changing the type of *implicitly* __unsafe_unretained
Class ivars to be strong. This is moderately evil but better than
what we were doing.
Second, when synthesizing the setter for a strong property of
non-retainable type, be sure to use objc_setProperty. This is
possible when the property is decorated with the NSObject
attribute. This is an ugly, ugly corner of the language, and
we probably ought to deprecate it.
The first is rdar://problem/12039404; the second was noticed by
inspection while fixing the first.
llvm-svn: 162244
Also, suggest 'readonly' even if the property has been given an ownership
attribute ('strong', 'weak', etc). This is used when properties are declared
readonly in the public interface but readwrite in a class extension.
<rdar://problem/11500004&11932285>
llvm-svn: 162220
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
specifier is unsed in a declaration; as it may not make the symbol
local to linkage unit as intended. Suggest using "hidden" visibility
attribute instead. // rdar://7703982
llvm-svn: 162138
both a waste of time, and prone to crash due to the use of the
error-recovery path in parser. Fixes <rdar://problem/12103608>, which
has been driving me nuts.
llvm-svn: 162081
elaborated type specifier in template instantiation: such a specifier is always
valid because it must be specified within the definition of the type.
llvm-svn: 162068
function arguments and arguments for variadic functions are of a particular
type which is determined by some other argument to the same function call.
Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed MPI_Datatype;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
fcntl() and ioctl().
llvm-svn: 162067
These require special handling, which we don't currently handle. This is being
put in place to ensure we don't do invalid symbol table lookups or try to parse
invalid assembly. The test cases just makes sure the latter isn't happening.
llvm-svn: 162050
variables, function or label references. The former is a potential clobber.
The latter is either an input or an output. Unfortunately, it's difficult to
test this patch at the moment, but the added test case will eventually do so.
llvm-svn: 162026
and remove ASTContext reference (which was frequently bound to a dereferenced
null pointer) from the recursive lump of printPretty functions. In so doing,
fix (at least) one case where we intended to use the 'dump' mode, but that
failed because a null ASTContext reference had been passed in.
llvm-svn: 162011
statement. For example,
if (x)
__asm out dx, ax __asm out dx, ax
results in a single inline asm statement (i.e., both "out dx, ax" statements are
predicated on if(x)).
llvm-svn: 161986
as it does something unexpected (but gcc compatible).
Suggest use of __attribute__((visibility("hidden")))
on declaration instead. // rdar://7703982
llvm-svn: 161972
The reason for the recent fallout for "attaching comments to any redeclaration"
change are two false assumptions:
(1) a RawComment is attached to a single decl (not true for 'typedef struct X *Y'
where we want the comment to be attached to both X and Y);
(2) the whole redeclaration chain has only a single comment (obviously false, the
user can put a separate comment for each redeclaration).
To fix (1) I revert the part of the recent change where a 'Decl*' member was
introduced to RawComment. Now ASTContext has a separate DenseMap for mapping
'Decl*' to 'FullComment*'.
To fix (2) I just removed the test with this assumption. We might not parse
every comment in redecl chain if we already parsed at least one.
llvm-svn: 161878
tablegen code, found by -fcatch-undefined-behavior. I would appreciate if
someone more familiar with the NEON code could point me in the direction of how
to write a test for this. We appear to have essentially no test coverage
whatsoever for these builtins.
llvm-svn: 161827
The AsmParser expects a single asm instruction, but valid ms-style inline asm
statements may contain multiple instructions.
This happens with asm blocks
__asm {
mov ebx, eax
mov ecx, ebx
}
or when multiple asm statements are adjacent to one another
__asm mov ebx, eax
__asm mov ecx, ebx
and
__asm mov ebx, eax __asm mov ecx, ebx
Currently, asm blocks are not properly handled.
llvm-svn: 161780
Not only look for the comment near the declaration itself, but also walk the
redeclaration chain: the previous declaration might have had a documentation
comment.
llvm-svn: 161722
things going on here that were problematic:
- We were missing the actual access check, or rather, it was suppressed
on account of being a redeclaration lookup.
- The access check would naturally happen during delay, which isn't
appropriate in this case.
- We weren't actually emitting dependent diagnostics associated with
class templates, which was unfortunate.
- Access was being propagated incorrectly for friend method declarations
that couldn't be matched at parse-time.
llvm-svn: 161652
This also provides isConst/Volatile/Restrict on FunctionTypes to coalesce
the implementation with other callers (& update those other callers).
Patch contributed by Sam Panzer (panzer@google.com).
llvm-svn: 161647