The machine scheduler currently biases register copies to/from
physical registers to be closer to their point of use / def to
minimize their live ranges. This change extends this to also physical
register assignments from immediate values.
This causes a reduction in reduction in overall register pressure and
minor reduction in spills and indirectly fixes an out-of-registers
assertion (PR39391).
Most test changes are from minor instruction reorderings and register
name selection changes and direct consequences of that.
Reviewers: MatzeB, qcolombet, myatsina, pcc
Subscribers: nemanjai, jvesely, nhaehnle, eraman, hiraditya,
javed.absar, arphaman, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D54218
llvm-svn: 346894
A call to @llvm.trap can be expected to be cold (i.e. unlikely to be
reached in a normal program execution).
Outlining paths which unconditionally trap is an important memory
saving. As the hot/cold splitting pass (imho) should not treat all
noreturn calls as cold, explicitly mark @llvm.trap cold so that it can
be outlined.
Split out of https://reviews.llvm.org/D54244.
Differential Revision: https://reviews.llvm.org/D54329
llvm-svn: 346885
Add support for "polymorphic" types to YAMLIO.
PolymorphicTraits can dynamically switch between other traits (Scalar, Map, or
Sequence). When inputting, the PolymorphicTraits type is told which type to
become, and when outputting the PolymorphicTraits type is asked which type it
currently is.
Also add support for TaggedScalarTraits to allow dynamically differentiating
between multiple scalar types using YAML tags.
Serialize empty maps as "{}" and empty sequences as "[]", so that types
are preserved when round-tripping PolymorphicTraits. This change has
equivalent semantics, but may break e.g. tests which compare output
verbatim.
Differential Revision: https://reviews.llvm.org/D48144
llvm-svn: 346884
Add support for the expansion of funnelshift/rotates to getIntrinsicInstrCost.
This also required us to move the X86 fshl/fshr costs to the same place as the rotates to avoid expansion and get correct scalarization vs vectorization costs.
llvm-svn: 346854
The definition of `pointer_iterator` omits what should be a `iterator_traits::<>::iterator_category` parameter from `iterator_adaptor_base`. As a result, iterators based on `pointer_iterator` always have defaulted value types and the wrong iterator category.
The definition of `pointee_iterator` just a few lines above does this correctly.
This resolves [[ https://bugs.llvm.org/show_bug.cgi?id=39617 | bug 39617 ]].
Patch by Dylan MacKenzie!
Reviewers: dblaikie
Differential Revision: https://reviews.llvm.org/D54377
llvm-svn: 346833
Summary:
This adds support for the 'event section' specified in the exception
handling proposal. (This was named 'exception section' first, but later
renamed to 'event section' to take possibilities of other kinds of
events into consideration. But currently we only store exception info in
this section.)
The event section is added between the global section and the export
section. This is for ease of validation per request of the V8 team.
This patch:
- Creates the event symbol type, which is a weak symbol
- Makes 'throw' instruction take the event symbol '__cpp_exception'
- Adds relocation support for events
- Adds WasmObjectWriter / WasmObjectFile (Reader) support
- Adds obj2yaml / yaml2obj support
- Adds '.eventtype' printing support
Reviewers: dschuff, sbc100, aardappel
Subscribers: jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54096
llvm-svn: 346825
We already determine a bunch of information about an MBB in
getMachineOutlinerMBBFlags. We can reuse that information to avoid calculating
things that must be false/true.
The first thing we can easily check is if an outlined sequence could ever
contain calls. There's no reason to walk over the outlined range, checking for
calls, if we already know that there are no calls in the block containing the
sequence.
llvm-svn: 346809
Summary:
Ranges base address specifiers can save a lot of object size in
relocation records especially in optimized builds.
For an optimized self-host build of Clang with split DWARF and debug
info compression in object files, but uncompressed debug info in the
executable, this change produces about 18% smaller object files and 6%
larger executable.
While it would've been nice to turn this on by default, gold's 32 bit
gdb-index support crashes on this input & I don't think there's any
perfect heuristic to implement solely in LLVM that would suffice - so
we'll need a flag one way or another (also possible people might want to
aggressively optimized for executable size that contains debug info
(even with compression this would still come at some cost to executable
size)) - so let's plumb it through.
Differential Revision: https://reviews.llvm.org/D54242
llvm-svn: 346788
Previously, the extend_vector_inreg opcode required their input register to be the same total width as their output. But this doesn't match up with how the X86 instructions are defined. For X86 the input just needs to be a legal type with at least enough elements to cover the output.
This patch weakens the check on these nodes and allows them to be used as long as they have more input elements than output elements. I haven't changed type legalization behavior so it will still create them with matching input and output sizes.
X86 will custom legalize these nodes by shrinking the input to be a 128 bit vector and once we've done that we treat them as legal operations. We still have one case during type legalization where we must custom handle v64i8 on avx512f targets without avx512bw where v64i8 isn't a legal type. In this case we will custom type legalize to a *extend_vector_inreg with a v16i8 input. After that the input is a legal type so type legalization should ignore the node and doesn't need to know about the relaxed restriction. We are no longer allowed to use the default expansion for these nodes during vector op legalization since the default expansion uses a shuffle which required the widths to match. Custom legalization for all types will prevent us from reaching the default expansion code.
I believe DAG combine works correctly with the released restriction because it doesn't check the number of input elements.
The rest of the patch is changing X86 to use either the vector_inreg nodes or the regular zero_extend/sign_extend nodes. I had to add additional isel patterns to handle any_extend during isel since simplifydemandedbits can create them at any time so we can't legalize to zero_extend before isel. We don't yet create any_extend_vector_inreg in simplifydemandedbits.
Differential Revision: https://reviews.llvm.org/D54346
llvm-svn: 346784
In D54435 there was some discussion about the expand_tilde flag for
real_path that I wanted to expose through the VFS. The consensus is that
these two things should be separate functions. Since we already have the
code for this I went ahead and added a function expand_tilde that does
just that.
Differential revision: https://reviews.llvm.org/D54448
llvm-svn: 346776
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.
Differential Revision: https://reviews.llvm.org/D53877
llvm-svn: 346774
This patch updates DuplicateInstructionsInSplitBetween to update a DTU
instead of applying updates to the DT directly.
Given that there only are 2 users, also updated them in this patch to
avoid churn.
I slightly moved the code in CallSiteSplitting around to reduce the
places where we have to pass in DTU. If necessary, I could split those
changes in a separate patch.
This fixes missing DT updates when dealing with musttail calls in
CallSiteSplitting, by using DTU->deleteBB.
Reviewers: junbuml, kuhar, NutshellySima, indutny, brzycki
Reviewed By: NutshellySima
llvm-svn: 346769
This patch turns InterleaveGroup into a template with the instruction type
being a template parameter. It also adds a VPInterleavedAccessInfo class, which
only contains a mapping from VPInstructions to their respective InterleaveGroup.
As we do not have access to scalar evolution in VPlan, we can re-use
convert InterleavedAccessInfo to VPInterleavedAccess info.
Reviewers: Ayal, mssimpso, hfinkel, dcaballe, rengolin, mkuper, hsaito
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D49489
llvm-svn: 346758
In some cases it is desirable to match the same pattern repeatedly
many times. Currently the only way to do it is to copy the same
check pattern as many times as needed. And that gets pretty unwieldy
when its more than count is big.
Introducing CHECK-COUNT-<num> directive which acts like a plain CHECK
directive yet matches the same pattern exactly <num> times.
Extended FileCheckType to a struct to add Count there.
Changed some parsing routines to handle non-fixed length of directive
(all currently existing directives were fixed-length).
The code is generic enough to allow future support for COUNT in more
than just PlainCheck directives.
See motivating example for this feature in reviews.llvm.org/D54223.
Reviewed By: chandlerc, dblaikie
Differential Revision: https://reviews.llvm.org/D54336
llvm-svn: 346722
Instead of returning Flags, return true if the MBB is safe to outline from.
This lets us check for unsafe situations, like say, in AArch64, X17 is live
across a MBB without being defined in that MBB. In that case, there's no point
in performing an instruction mapping.
llvm-svn: 346718
Remove another bit of unused configuration potential from GCStrategy. It's not entirely clear what the intention here was, but from the docs, it sounds like this may have been subsumed by patchable call support.
Note: This change is deliberately small to make it clear that while implemented, there's nothing using the option. A following NFC will do most of the simplifications.
llvm-svn: 346701
Instead of defaulting to a cost = 1, expand to element extract/insert like we do for other shuffles.
This exposes an issue in LoopVectorize which could call SK_ExtractSubvector with a scalar subvector type.
llvm-svn: 346656
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
This patch relaxes overconservative checks on whether or not we could write
memory before we execute an instruction. This allows us to hoist guards out of
loops even if they are not in the header block.
Differential Revision: https://reviews.llvm.org/D50891
Reviewed By: fedor.sergeev
llvm-svn: 346643
Summary:
When making code coverage, a lot of files (like the ones coming from /usr/include) are removed when post-processing gcno/gcda so finally they doen't need to be instrumented nor to appear in gcno/gcda.
The goal of the patch is to be able to filter the files we want to instrument, there are several advantages to do that:
- improve speed (no overhead due to instrumentation on files we don't care)
- reduce gcno/gcda size
- it gives the possibility to easily instrument only few files (e.g. ones modified in a patch) without changing the build system
- need to accept this patch to be enabled in clang: https://reviews.llvm.org/D52034
Reviewers: marco-c, vsk
Reviewed By: marco-c
Subscribers: llvm-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D52033
llvm-svn: 346641
The custom root mechanism didn't actually do anything. ShadowStackGC, the only one which used it, just removed the gcroots before they reached the normal lowering in SelectionDAG. As a result, the state flag had no value.
llvm-svn: 346632
Summary: Use forward declaration as the reviewer is in favor of #include and delete a redundant declaration of Function.
Reviewers: fhahn
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54398
llvm-svn: 346627
The GCStrategy provides three configuration options were are largely redundant.
1) Support for conditionally lowering gcread and gcwrite to loads and stores. This is redundant since any GC which wished to use these abstractions would lower them out of existance before the built in lowering anyways. As such, there's no need to have the lowering being conditional.
2) Conditional initialization for allocas marked via gcroot. Semantically, roots have to be initialized before first potential use. Arguably, the frontend really should have responsibility for that, but the old API allowed the frontend to ignore this detail. Only one builtin GC used the non-initializing mode. Since no one to my knowledge actually uses the ErlangGC strategy, I decide the slight pessimization was worth the simplicity. If that turns out to be problematic, we can always improve the insertion algorithm to detect more existing initializing stores.
llvm-svn: 346621
Summary: The debug_info_offset values in .debug_{,gnu_}pub{name,types} may be relocated. Change it to DWARFSection so that we can get relocated values.
Reviewers: ruiu, dblaikie, grimar, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54375
llvm-svn: 346615
In a lot of places an empty string was passed as the ErrorBanner to
logAllUnhandledErrors. This patch makes that argument optional to
simplify the call sites.
llvm-svn: 346604
This is a long-awaited follow-up suggested in D33578. Since then, we've picked up even more
opportunities for vector narrowing from changes like D53784, so there are a lot of test diffs.
Apart from 2-3 strange cases, these are all wins.
I've structured this to be no-functional-change-intended for any target except for x86
because I couldn't tell if AArch64, ARM, and AMDGPU would improve or not. All of those
targets have existing regression tests (4, 4, 10 files respectively) that would be
affected. Also, Hexagon overrides the shouldReduceLoadWidth() hook, but doesn't show
any regression test diffs. The trade-off is deciding if an extra vector load is better
than a single wide load + extract_subvector.
For x86, this is almost always better (on paper at least) because we often can fold
loads into subsequent ops and not increase the official instruction count. There's also
some unknown -- but potentially large -- benefit from using narrower vector ops if wide
ops are implemented with multiple uops and/or frequency throttling is avoided.
Differential Revision: https://reviews.llvm.org/D54073
llvm-svn: 346595
This patch allows internalising globals if all accesses to them
(from live functions) are from non-volatile load instructions
Differential revision: https://reviews.llvm.org/D49362
llvm-svn: 346584
ComputeValueKnownInPredecessors has a "visited" set to prevent infinite
loops, since a value can be visited more than once. However, the
implementation didn't prevent the algorithm from taking exponential
time. Instead of removing elements from the RecursionSet one at a time,
we should keep around the whole set until
ComputeValueKnownInPredecessors finishes, then discard it.
The testcase is synthetic because I was having trouble effectively
reducing the original. But it's basically the same idea.
Instead of failing, we could theoretically cache the result instead.
But I don't think it would help substantially in practice.
Differential Revision: https://reviews.llvm.org/D54239
llvm-svn: 346562
Previous version used type erasure through a `void* (*)()` pointer,
which triggered gcc warning and implied a lot of reinterpret_cast.
This version should make it harder to hit ourselves in the foot.
Differential revision: https://reviews.llvm.org/D54203
llvm-svn: 346522
Currently in llvm, CalleeSavedInfo can only assign a callee saved register to
stack frame index to be spilled in the prologue. We would like to enable
spilling gprs to vector registers. This patch adds the capability to spill to
other registers aside from just the stack. It also adds the changes for power9
to spill gprs to volatile vector registers when they are available.
This happens only for leaf functions when using the option
-ppc-enable-pe-vector-spills.
Differential Revision: https://reviews.llvm.org/D39386
llvm-svn: 346512
Summary:
This simplifies the code and moves everything to tablegen for consistency. This
also prepares the ground for adding issue counters.
Reviewers: gchatelet, john.brawn, jsji
Subscribers: nemanjai, mgorny, javed.absar, kbarton, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D54297
llvm-svn: 346489
After D45330, Dominators are required for IPSCCP and can be preserved.
This patch preserves DominatorTreeAnalysis in the new pass manager. AFAIK the legacy pass manager cannot preserve function analysis required by a module analysis.
Reviewers: davide, dberlin, chandlerc, efriedma, kuhar, NutshellySima
Reviewed By: chandlerc, kuhar, NutshellySima
Differential Revision: https://reviews.llvm.org/D47259
llvm-svn: 346486
In SimplifyCFG when given a conditional branch that goes to BB1 and BB2, the hoisted common terminator instruction in the two blocks, caused debug line records associated with subsequent select instructions to become ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53390
llvm-svn: 346481
Summary:
This change covers a number of things spanning LLVM and compiler-rt,
which are related in a non-trivial way.
In LLVM, we have a library that handles the FDR mode even log loading,
which uses C++'s runtime polymorphism feature to better faithfully
represent the events that are written down by the FDR mode runtime. We
do this by interpreting a trace that's serliased in a common format
agreed upon by both the trace loading library and the FDR mode runtime.
This library is under active development, which consists of features
allowing us to reconstitute a higher-level event log.
This event log is used by the conversion and visualisation tools we have
for interpreting XRay traces.
One of the tools we have is a diagnostic tool in llvm-xray called
`fdr-dump` which we've been using to debug our expectations of what the
FDR runtime should be writing and what the logical FDR event log
structures are. We use this fairly extensively to reason about why some
non-trivial traces we're generating with FDR mode runtimes fail to
convert or fail to parse correctly.
One of these failures we've found in manual debugging of some of the
traces we've seen involve an inconsistency between the buffer extents (a
record indicating how many bytes to follow are part of a logical
thread's event log) and the record of the bytes written into the log --
sometimes it turns out the data could be garbage, due to buffers being
recycled, but sometimes we're seeing the buffer extent indicating a log
is "shorter" than the actual records associated with the buffer. This
case happens particularly with function entry records with a call
argument.
This change for now updates the FDR mode runtime to write the bytes for
the function call and arg record before updating the buffer extents
atomically, allowing multiple threads to see a consistent view of the
data in the buffer using the atomic counter associated with a buffer.
What we're trying to prevent here is partial updates where we see the
intermediary updates to the buffer extents (function record size then
call argument record size) becoming observable from another thread, for
instance, one doing the serialization/flushing.
To do both diagnose this issue properly, we need to be able to honour
the extents being set in the `BufferExtents` records marking the
beginning of the logical buffers when reading an FDR trace. Since LLVM
doesn't use C++'s RTTI mechanism, we instead follow the advice in the
documentation for LLVM Style RTTI
(https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html). We then rely on
this RTTI feature to ensure that our file-based record producer (our
streaming "deserializer") can honour the extents of individual buffers
as we interpret traces.
This also sets us up to be able to eventually do smart
skipping/continuation of FDR logs, seeking instead to find BufferExtents
records in cases where we find potentially recoverable errors. In the
meantime, we make this change to operate in a strict mode when reading
logical buffers with extent records.
Reviewers: mboerger
Subscribers: hiraditya, llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D54201
llvm-svn: 346473
Summary:
This fixes PR 37422
In ELF, non-weak symbols can also be non-prevailing. In this particular
PR, the __llvm_profile_* symbols are non-prevailing but weren't getting
dropped - causing multiply-defined errors with lld.
Also add a test, strong_non_prevailing.ll, to ensure that multiple
copies of a strong symbol are dropped.
To fix the test regressions exposed by this fix,
- do not mark prevailing copies for symbols with 'appending' linkage.
There's no one prevailing copy for such symbols.
- fix the prevailing version in dead-strip-fulllto.ll
- explicitly pass exported symbols to llvm-lto in fumcimport.ll and
funcimport_var.ll
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith,
dang, srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D54125
llvm-svn: 346436
In order to accurately put a type into the correct location in the AST
we construct from debug info, we need to be able to determine what
DeclContext (namespace, global, nested class, etc) that it goes into.
PDB doesn't contain this mapping. It does, however, contain the reverse
mapping. That is, for a given class type T, you can determine all
classes Q1, Q2, ..., Qn that are nested inside of T. We need to know,
for a given class type Q, what type T is it nested inside of.
This patch builds this map as a pre-processing step when we first
load the PDB by scanning every type. Initial tests show that while
this can be slow in debug builds of LLDB, it is quite fast in release
builds (less than 2 seconds for a ~1GB PDB, and it only needs to happen
once).
Furthermore, having this pre-processing step in place allows us to
repurpose it for building up other kinds of indexing to it down the
line. For the time being, this gives us very accurate reconstruction
of the DeclContext hierarchy.
Differential Revision: https://reviews.llvm.org/D54216
llvm-svn: 346429
Summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Reviewers: asl
Reviewed By: asl
Subscribers: pftbest, krisb, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D53661
llvm-svn: 346374
This allows testing AMDGPU alias analysis like any
other alias analysis pass. This fixes the existing
test pointlessly running opt -O3 when it really
just wants to run the one analysis.
Before there was no way to test this using -aa-eval
with opt, since the default constructed pass
is run. The wrapper subclass allows the
default constructor to pass the necessary callback.
llvm-svn: 346353
NFC-ish. This doesn't change the behaviour of the outliner, but does make sure
that you won't end up with say
OUTLINED_FUNCTION_2:
...
ret
OUTLINED_FUNCTION_248:
...
ret
as the only outlined functions in your module. Those should really be
OUTLINED_FUNCTION_0:
...
ret
OUTLINED_FUNCTION_1:
...
ret
If we produce outlined functions, they probably should have sequential numbers
attached to them. This makes it a bit easier+stable to write outliner tests.
The point of this is to move towards a bit more stability in outlined function
names. By doing this, we at least don't rely on the traversal order of the
suffix tree. Instead, we rely on the order of the candidate list, which is
*far* more consistent. The candidate list is ordered by the end indices of
candidates, so we're more likely to get a stable ordering. This is still
susceptible to changes in the cost model though (like, if we suddenly find new
candidates, for example).
llvm-svn: 346340
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
Summary:
This is replacement for patch in https://reviews.llvm.org/D49460.
When we fork, the counters are duplicate as they're and so the values are finally wrong when writing gcda for parent and child.
So just before to fork, we flush the counters and so the parent and the child have new counters set to zero.
For exec** functions, we need to flush before the call to have some data.
Reviewers: vsk, davidxl, marco-c
Reviewed By: marco-c
Subscribers: llvm-commits, sylvestre.ledru, marco-c
Differential Revision: https://reviews.llvm.org/D53593
llvm-svn: 346313
Summary:
This change updates the version number for FDR logs to 5, and update the
trace processing to support changes in the custom event records.
In the runtime, since we're already writing down the record preamble to
handle CPU migrations and TSC wraparound, we can use the same TSC delta
encoding in the custom event and typed event records that we use in
function event records. We do the same change to typed events (which
were unsupported before this change in the trace processing) which now
show up in the trace.
Future changes should increase our testing coverage to make custom and
typed events as first class entities in the FDR mode log processing
tools.
This change is also a good example of how we end up supporting new
record types in the FDR mode implementation. This shows the places where
new record types are added and supported.
Depends on D54139.
Reviewers: mboerger
Subscribers: hiraditya, arphaman, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D54140
llvm-svn: 346293
As shown, this is used to eliminate redundant code in InstCombine,
and there are more cases where we should be using this pattern, but
we're currently unintentionally dropping flags.
llvm-svn: 346282
This feature makes it easy to tune FileCheck diagnostic output when
running the test suite via ninja, a bot, or an IDE. For example:
```
$ FILECHECK_OPTS='-color -v -dump-input-on-failure' \
LIT_FILTER='OpenMP/for_codegen.cpp' ninja check-clang \
| less -R
```
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D53517
llvm-svn: 346272
Summary:
The NotEligibleToImport flag on the GlobalValueSummary was set if it
isn't legal to import (e.g. because it references unpromotable locals)
and when it can't be inlined (in which case importing is pointless).
I split out the inlinable piece into a separate flag on the
FunctionSummary (doesn't make sense for aliases or global variables),
because in the future we may want to import for reasons other than
inlining.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53345
llvm-svn: 346261
Change the type in a couple of lists and sets that only store physical
registers from unsigned to MCPhysRegs. The later is only 16bits and
saves us a bit of memory.
llvm-svn: 346254
It was causing a crash because we were trying to get the definition
of a target register. Fixed the issue by adding a check and added
a test case for that.
llvm-svn: 346251
Support the IS_SHARED bit in the memory limits flag word.
The compiler does not create object files with memory definitions,
but the field is used by the linker.
Differential Revision: https://reviews.llvm.org/D54131
llvm-svn: 346246
Summary:
This change cuts across LLVM and compiler-rt to add support for
rendering custom events in the XRayRecord type, to allow for including
user-provided annotations in the output YAML (as raw bytes).
This work enables us to add custom event and typed event records into
the `llvm::xray::Trace` type for user-provided events. This can then be
programmatically handled through the C++ API and can be included in some
of the tooling as well. For now we support printing the raw data we
encounter in the custom events in the converted output.
Future work will allow us to start interpreting these custom and typed
events through a yet-to-be-defined API for extending the trace analysis
library.
Reviewers: mboerger
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D54139
llvm-svn: 346214
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
Summary:
Improve the intrinsic bindings with operations for
- Retrieving and automatically inserting the declaration of an intrinsic by ID
- Retrieving the name of a non-overloaded intrinsic by ID
- Retrieving the name of an overloaded intrinsic by ID and overloaded parameter types
Improve the echo test to copy non-overloaded intrinsics by ID.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53626
llvm-svn: 346195
MachineFunction can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
Do the same for references in ScheduleDAG and RegUsageInfoCollector.
llvm-svn: 346183
MachineModuleInfo can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
llvm-svn: 346182
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
This change allows for link-time merging of debugging information from
Microsoft precompiled types OBJs compiled with cl.exe /Z7 /Yc and /Yu.
This fixes llvm.org/PR34278
Differential Revision: https://reviews.llvm.org/D45213
llvm-svn: 346154
Summary:
LTO and ThinLTO optimizes the IR differently.
One source of differences is the amount of internalizations that
can happen.
Add an option to enable/disable internalization so that other
differences can be studied in isolation. e.g. inlining.
There are other things lto and thinlto do differently, I will add
flags to enable/disable them as needed.
Reviewers: tejohnson, pcc, steven_wu
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53294
llvm-svn: 346140
* Create an install target for it
* Add it under tools/opt-remarks
* Add an export file for the dylib
* Install the llvm-c/OptRemarks.h header
* Add an API to query its version
rdar://45458839
llvm-svn: 346127
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
ModuleSummaryIndex::exportToDot crashes when linking the Linux kernel
under ThinLTO using LLVMgold.so. This is due to the exportToDot
function trying to get the GUID of an empty ValueInfo. The root cause
related to the fact that we attempt to get the GUID of an aliasee
via its OriginalGUID recorded in the aliasee summary, and that is not
always possible. Specifically, we cannot do this mapping when the value
is internal linkage and there were other internal linkage symbols with
the same name.
There are 2 fixes for the problem included here.
1) In all cases where we can currently print the dot file from the
command line (which is only via save-temps), we have a valid AliaseeGUID
in the AliasSummary. Use that when it is available, so that we can get
the correct aliasee GUID whenever possible.
2) However, if we were to invoke exportToDot from the debugger right
after it is built during the initial analysis step (i.e. the per-module
summary), we won't have the AliaseeGUID field populated. In that case,
we have a fallback fix that will simply print "@"+GUID when we aren't
able to get the GUID from the OriginalGUID. It simply checks if the VI
is valid or not before attempting to get the name. Additionally, since
getAliaseeGUID will assert that the AliaseeGUID is non-zero, guard the
earlier fix#1 by a new function hasAliaseeGUID().
Reviewers: pcc, tmroeder
Subscribers: evgeny777, mehdi_amini, inglorion, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53986
llvm-svn: 346055
Use getImageBase() helper to compute the image base. Fix various
offsets/addresses/masks so they're actually correct.
This allows decoding unwind info from DLLs, and unwind info from object
files containing multiple functions.
Differential Revision: https://reviews.llvm.org/D54015
llvm-svn: 346036
Summary:
Change the dynamic cast in CallBase::getCalledFunction() to allow
null-valued function operands.
This patch fixes a crash that occurred when a funtion operand of a
call instruction was dropped, and later on a metadata-carrying
instruction was printed out. When allocating the metadata slot numbers,
getCalledFunction() would be invoked on the call with the dropped
operand, resulting in a failed non-null assertion in isa<>.
This fixes PR38924, in which a printout in DBCE crashed due to this.
This aligns getCalledFunction() with getCalledValue(), as the latter
allows the operand to be null.
Reviewers: vsk, dexonsmith, hfinkel
Reviewed By: dexonsmith
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D52537
llvm-svn: 345966
Declaration and definition have slightly different names with a typo in the
declaration, which leads to a link error.
See the following bug report for more details: https://bugs.llvm.org/show_bug.cgi?id=39523
llvm-svn: 345960
- Make some TargetPassConfig methods that just check whether options have
been set static.
- Shuffle code in LLVMTargetMachine around so addPassesToGenerateCode
only deals with TargetPassConfig now (but not with MCContext or the
creation of MachineModuleInfo)
llvm-svn: 345918
We want to remove this fneg API because it would silently fail
if we add an actual fneg instruction to IR (as proposed in
D53877 ).
We have a newer 'match' API that makes checking for
these patterns simpler. It also works with vectors
that may include undef elements in constants.
If any out-of-tree users need updating, they can model
their code changes on this commit:
https://reviews.llvm.org/rL345295
llvm-svn: 345904
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
Summary:
This function was causing a crash when `MaxElements == 1` because
it was trying to create a single element vector type.
Reviewers: dsanders, aemerson, aditya_nandakumar
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53734
llvm-svn: 345875