Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Instead of reusing the name `MapValue()` when mapping `Metadata`, use
`MapMetadata()`. The old name doesn't make much sense after the
`Metadata`/`Value` split.
llvm-svn: 224566
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Not all address taken blocks get inlined. The reason is
that a blocks new address is known only when it is cloned. But e.g.
a branch instruction in a different block could need that address earlier
while it gets cloned. The solution is to collect the set of all
blocks that can potentially get inlined and compute a new block address
up front. Then clone and cleanup.
rdar://16427209
llvm-svn: 207713
Summary:
Tested with a unit test because we don't appear to have any transforms
that use this other than ASan, I think.
Fixes PR17935.
Reviewers: nicholas
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3194
llvm-svn: 204866
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.
llvm-svn: 182776
Collections of attributes are handled via the AttributeSet class now. This
finally frees us up to make significant changes to how attributes are structured.
llvm-svn: 173228
Because the Attribute class is going to stop representing a collection of
attributes, limit the use of it as an aggregate in favor of using AttributeSet.
This replaces some of the uses for querying the function attributes.
llvm-svn: 172844
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
llvm-svn: 159312
simplification has been performed. This is a bit less efficient
(requires another ilist walk of the basic blocks) but shouldn't matter
in practice. More importantly, it's just too much work to keep track of
all the various ways the return instructions can be mutated while
simplifying them. This fixes yet another crasher, reported by Daniel
Dunbar.
llvm-svn: 154179
dead code, including dead return instructions in some cases. Otherwise,
we end up having a bogus poniter to a return instruction that blows up
much further down the road.
It turns out that this pattern is both simpler to code, easier to update
in the face of enhancements to the inliner cleanup, and likely cheaper
given that it won't add dead instructions to the list.
Thanks to John Regehr's numerous test cases for teasing this out.
llvm-svn: 154157
blocks in the function cloner. This removes the last case of trivially
dead code that I've been seeing in the wild getting inlined, analyzed,
re-inlined, optimized, only to be deleted. Nukes a FIXME from the
cleanup tests.
llvm-svn: 153572
aggressively. There are lots of dire warnings about this being expensive
that seem to predate switching to the TrackingVH-based value remapper
that is automatically updated on RAUW. This makes it easy to not just
prune single-entry PHIs, but to fully simplify PHIs, and to recursively
simplify the newly inlined code to propagate PHINode simplifications.
This introduces a bit of a thorny problem though. We may end up
simplifying a branch condition to a constant when we fold PHINodes, and
we would like to nuke any dead blocks resulting from this so that time
isn't wasted continually analyzing them, but this isn't easy. Deleting
basic blocks *after* they are fully cloned and mapped into the new
function currently requires manually updating the value map. The last
piece of the simplification-during-inlining puzzle will require either
switching to WeakVH mappings or some other piece of refactoring. I've
left a FIXME in the testcase about this.
llvm-svn: 153410
to instead rely on much more generic and powerful instruction
simplification in the function cloner (and thus inliner).
This teaches the pruning function cloner to use instsimplify rather than
just the constant folder to fold values during cloning. This can
simplify a large number of things that constant folding alone cannot
begin to touch. For example, it will realize that 'or' and 'and'
instructions with certain constant operands actually become constants
regardless of what their other operand is. It also can thread back
through the caller to perform simplifications that are only possible by
looking up a few levels. In particular, GEPs and pointer testing tend to
fold much more heavily with this change.
This should (in some cases) have a positive impact on compile times with
optimizations on because the inliner itself will simply avoid cloning
a great deal of code. It already attempted to prune proven-dead code,
but now it will be use the stronger simplifications to prove more code
dead.
llvm-svn: 153403
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481