MLIR C API use the `MlirStringRef` instead of `const char *` for the string type now. This patch sync the Python bindings with the C API modification.
Differential Revision: https://reviews.llvm.org/D92007
* Was missed in the initial submission and is required for a ConstantLike op.
* Also adds a materializeConstant hook to preserve it.
* Tightens up the argument constraint on tosa.const to match what is actually legal.
Differential Revision: https://reviews.llvm.org/D92040
This revision will make it easier to create new ops base on the strided memref abstraction outside of the std dialect.
OffsetSizeAndStrideOpInterface is an interface for ops that allow specifying mixed dynamic and static offsets, sizes and strides variadic operands.
Ops that implement this interface need to expose the following methods:
1. `getArrayAttrRanks` to specify the length of static integer
attributes.
2. `offsets`, `sizes` and `strides` variadic operands.
3. `static_offsets`, resp. `static_sizes` and `static_strides` integer
array attributes.
The invariants of this interface are:
1. `static_offsets`, `static_sizes` and `static_strides` have length
exactly `getArrayAttrRanks()`[0] (resp. [1], [2]).
2. `offsets`, `sizes` and `strides` have each length at most
`getArrayAttrRanks()`[0] (resp. [1], [2]).
3. if an entry of `static_offsets` (resp. `static_sizes`,
`static_strides`) is equal to a special sentinel value, namely
`ShapedType::kDynamicStrideOrOffset` (resp. `ShapedType::kDynamicSize`,
`ShapedType::kDynamicStrideOrOffset`), then the corresponding entry is
a dynamic offset (resp. size, stride).
4. a variadic `offset` (resp. `sizes`, `strides`) operand must be present
for each dynamic offset (resp. size, stride).
This interface is useful to factor out common behavior and provide support
for carrying or injecting static behavior through the use of the static
attributes.
Differential Revision: https://reviews.llvm.org/D92011
Use the correct interface base type name when generating attribute interfaces
with TabeGen.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D92023
1. Move ThreadPool ownership to the runtime, and wait for the async tasks completion in the destructor.
2. Remove MLIR_ASYNCRUNTIME_EXPORT from method definitions because they are unnecessary in .cpp files, as only function declarations need to be exported, not their definitions.
3. Fix concurrency bugs in group emplace and potential use-after-free in token emplace.
Tested internally 10k runs in `async.mlir` and `async-group.mlir`.
Fixed: https://bugs.llvm.org/show_bug.cgi?id=48267
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91988
This file is intended to be included by other files, including
out-of-tree dialects, and makes more sense in `include` than in `lib`.
Depends On D91652
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91961
Attributes represent additional data about an operation and are intended to be
modifiable during the lifetime of the operation. In the dialect-specific Python
bindings, attributes are exposed as properties on the operation class. Allow
for assigning values to these properties. Also support creating new and
deleting existing attributes through the generic "attributes" property of an
operation. Any validity checking must be performed by the op verifier after the
mutation, similarly to C++. Operations are not invalidated in the process: no
dangling pointers can be created as all attributes are owned by the context and
will remain live even if they are not used in any operation.
Introduce a Python Test dialect by analogy with the Test dialect and to avoid
polluting the latter with Python-specific constructs. Use this dialect to
implement a test for the attribute access and mutation API.
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91652
It is a simple conversion that only requires to change the region argument
types, generalize it from ParallelOp.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91989
While this makes the unit tests a bit more verbose, this simplifies the creation of bindings because only the bidirectional mapping between the host language's string type and MlirStringRef need to be implemented.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D91905
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
Enhance the tile+fuse logic to allow fusing a sequence of operations.
Make sure the value used to obtain tile shape is a
SubViewOp/SubTensorOp. Current logic used to get the bounds of loop
depends on the use of `getOrCreateRange` method on `SubViewOp` and
`SubTensorOp`. Make sure that the value/dim used to compute the range
is from such ops. This fix is a reasonable WAR, but a btter fix would
be to make `getOrCreateRange` method be a method of `ViewInterface`.
Differential Revision: https://reviews.llvm.org/D90991
Previously, there was no way to add context to the diagnostic engine via the C API. Adding this ability makes it much easier to reason about memory ownership, particularly in reference-counted languages such as Swift. There are more details in the review comments.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91738
An SCF 'for' loop does not iterate if its lower bound is equal to its upper
bound. Remove loops where both bounds are the same SSA value as such bounds are
guaranteed to be equal. Similarly, remove 'parallel' loops where at least one
pair of respective lower/upper bounds is specified by the same SSA value.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D91880
The existing implementation of the conversion from SCF Parallel operation to
SCF "for" loops in order to further convert those loops to branch-based CFG has
been cloning the loop and reduction body operations into the new loop because
ConversionPatternRewriter was missing support for moving blocks while replacing
their arguments. This functionality now available, use it to implement the
conversion and avoid cloning operations, which may lead to doubling of the IR
size during the conversion.
In addition, this fixes an issue with converting nested SCF "if" conditionals
present in "parallel" operations that would cause the conversion infrastructure
to stop because of the repeated application of the pattern converting "newly"
created "if"s (which were in fact just moved). Arguably, this should be fixed
at the infrastructure level and this fix is a workaround.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D91955
This revision refactors code used in various Linalg transformations and makes it a first class citizen to the LinalgStructureOpInterface. This is in preparation to allowing more advanced Linalg behavior but is otherwise NFC.
Differential revision: https://reviews.llvm.org/D91863
- Fixes bug 48242 point 3 crash.
- Makes the improvments from points 1 & 2.
https://bugs.llvm.org/show_bug.cgi?id=48262
```
def RTLValueType : Type<CPred<"isRTLValueType($_self)">, "Type"> {
string cppType = "::mlir::Type";
}
```
Works now, but merely by happenstance. Parameters expects a `TypeParameter` class def or a string representing a c++ type but doesn't enforce it.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D91939
* Makes `pip install pybind11` do the right thing with no further config.
* Since we now require a version of pybind11 greater than many LTS OS installs (>=2.6), a more convenient way to get a recent version is preferable.
* Also adds the version spec to find_package so it will skip older versions that may be lying around.
* Tested the full matrix of old system install, no system install, pip install and no pip install.
Differential Revision: https://reviews.llvm.org/D91903
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
Adds tests for full sum reduction (tensors summed up into scalars)
and the well-known sampled-dense-dense-matrix-product. Refines
the optimizations rules slightly to handle the summation better.
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D91818
Add transformation to be able to forward transfer_write into transfer_read
operation and to be able to remove dead transfer_write when a transfer_write is
overwritten before being read.
Differential Revision: https://reviews.llvm.org/D91321
Block merging in MLIR will incorrectly merge blocks with operations whose values are used outside of that block. This change forbids this behavior and provides a test where it is illegal to perform such a merge.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91745
Add canoncalization patterns to remove zero-iteration 'for' loops, replace
single-iteration 'for' loops with their bodies; remove known-false conditionals
with no 'else' branch and replace conditionals with known value by the
respective region. Although similar transformations are performed at the CFG
level, not all flows reach that level, e.g., the GPU flow may want to remove
single-iteration loops before deciding on loop mapping to thread dimensions.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D91865
This canonicalization is useful to resolve loads into scalar values when
doing partial bufferization.
Differential Revision: https://reviews.llvm.org/D91855
This reverts commit f8284d21a8.
Revert "[mlir][Linalg] NFC: Expose some utility functions used for promotion."
This reverts commit 0c59f51592.
Revert "Remove unused isZero function"
This reverts commit 0f9f0a4046.
Change f8284d21 led to multiple failures in IREE compilation.
Depends On D89963
**Automatic reference counting algorithm outline:**
1. `ReturnLike` operations forward the reference counted values without
modifying the reference count.
2. Use liveness analysis to find blocks in the CFG where the lifetime of
reference counted values ends, and insert `drop_ref` operations after
the last use of the value.
3. Insert `add_ref` before the `async.execute` operation capturing the
value, and pairing `drop_ref` before the async body region terminator,
to release the captured reference counted value when execution
completes.
4. If the reference counted value is passed only to some of the block
successors, insert `drop_ref` operations in the beginning of the blocks
that do not have reference coutned value uses.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D90716
D78076 supports big endian in DenseElementsAttr, but does not work when
APInt has multiple words(the number of bits > 64). This patch updates
D78076 to support it.
This patch removed the fix in D78076 and re-implemented to support multiple words.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D80272
Exposing some utility functions from Linalg to allow for promotion of
fused views outside of the core tile+fuse logic.
This is an alternative to patch D91322 which adds the promotion logic
to the tileAndFuse method. Downside with that approach is that it is
not easily customizable based on needs.
Differential Revision: https://reviews.llvm.org/D91503
Null types are commonly used as an error marker. Catch them in the constructor
of Operation if they are present in the result type list, as otherwise this
could lead to further surprising behavior when querying op result types.
Fix AsyncToLLVM and StandardToLLVM that were using null types when constructing
operations.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91770
These utilities are more closely associated with the buffer
optimizations and buffer deallocation than with the dialect conversion
stuff in Bufferize.h. So move them out.
This makes Bufferize.h very easy to understand and completely focused on
dialect conversion.
Differential Revision: https://reviews.llvm.org/D91563
These pointers do not need to be mutable. This has an affect that generated function signatures in the Swift bindings now use `UnsafePointer` instead of `UnsafeMutablePointer`.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D91740