know how to recover from an error, we can attach a hint to the
diagnostic that states how to modify the code, which can be one of:
- Insert some new code (a text string) at a particular source
location
- Remove the code within a given range
- Replace the code within a given range with some new code (a text
string)
Right now, we use these hints to annotate diagnostic information. For
example, if one uses the '>>' in a template argument in C++98, as in
this code:
template<int I> class B { };
B<1000 >> 2> *b1;
we'll warn that the behavior will change in C++0x. The fix is to
insert parenthese, so we use code insertion annotations to illustrate
where the parentheses go:
test.cpp:10:10: warning: use of right-shift operator ('>>') in template
argument will require parentheses in C++0x
B<1000 >> 2> *b1;
^
( )
Use of these annotations is partially implemented for HTML
diagnostics, but it's not (yet) producing valid HTML, which may be
related to PR2386, so it has been #if 0'd out.
In this future, we could consider hooking this mechanism up to the
rewriter to actually try to fix these problems during compilation (or,
after a compilation whose only errors have fixes). For now, however, I
suggest that we use these code modification hints whenever we can, so
that we get better diagnostics now and will have better coverage when
we find better ways to use this information.
This also fixes PR3410 by placing the complaint about missing tokens
just after the previous token (rather than at the location of the next
token).
llvm-svn: 65570
vector<vector<double>> Matrix;
In C++98/03, this token always means "right shift". However, if we're in
a context where we know that it can't mean "right shift", provide a
friendly reminder to put a space between the two >'s and then treat it
as two >'s as part of recovery.
In C++0x, this token is always broken into two '>' tokens.
llvm-svn: 65484
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
llvm-svn: 64922
any named parameters, e.g., this is accepted in C:
void f(...) __attribute__((overloadable));
although this would be rejected:
void f(...);
To do this, moved the checking of the "ellipsis without any named
arguments" condition from the parser into Sema (where it belongs anyway).
llvm-svn: 64902
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
This shrinks OwningResult by one pointer. Since it is no longer larger than OwningPtr, merge the two.
This leads to simpler client code and speeds up my benchmark by 2.7%.
For some reason, this exposes a previously hidden bug, causing a regression in SemaCXX/condition.cpp.
llvm-svn: 63867
function DeclaratorChunk in common cases. This uses a fixed array in
Declarator when it is small enough for the first function declarator chunk
in a declarator.
This eliminates all malloc/free traffic from DeclaratorChunk::getFunction
when running on Cocoa.h except for five functions: signal/bsd_signal/sigset,
which have multiple Function DeclChunk's, and
CFUUIDCreateWithBytes/CFUUIDGetConstantUUIDWithBytes, which take more than
16 arguments.
This patch was pair programmed with Steve.
llvm-svn: 62599
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
ParseCastExpression into the switch. This gets it out of the hot
path through ParseCastExpression for all the non-identifier and
non-:: tokens.
llvm-svn: 61643
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357
template<typename T> void f(T x) {
g(x); // g is a dependent name, so don't even bother to look it up
g(); // error: g is not a dependent name
}
Note that when we see "g(", we build a CXXDependentNameExpr. However,
if none of the call arguments are type-dependent, we will force the
resolution of the name "g" and replace the CXXDependentNameExpr with
its result.
GCC actually produces a nice error message when you make this
mistake, and even offers to compile your code with -fpermissive. I'll
do the former next, but I don't plan to do the latter.
llvm-svn: 60618
with implicit quotes around them. This has a bunch of follow-on
effects and requires tweaking to a whole lot of code. This causes
a regression in two tests (xfailed) by causing it to emit things like:
Line 10: duplicate interface declaration for category 'MyClass1' ('Category1')
instead of:
Line 10: duplicate interface declaration for category 'MyClass1(Category1)'
I will fix this in a follow-up commit.
As part of this, I had to start switching stuff to use ->getDeclName() instead
of Decl::getName() for consistency. This is good, but I was planning to do this
as an independent patch. There will be several follow-on patches
to clean up some of the mess, but this patch is already too big.
llvm-svn: 59917
built-in operator candidates. Test overloading of '&' and ','.
In C++, a comma expression is an lvalue if its right-hand
subexpression is an lvalue. Update Expr::isLvalue accordingly.
llvm-svn: 59643
The core fix in Sema::ActOnClassMessage(). All the other changes have to do with passing down the SourceLocation for the receiver (to properly position the cursor when producing an error diagnostic).
llvm-svn: 59639
post-decrement, including support for generating all of the built-in
operator candidates for these operators.
C++ and C have different rules for the arguments to the builtin unary
'+' and '-'. Implemented both variants in Sema::ActOnUnaryOp.
In C++, pre-increment and pre-decrement return lvalues. Update
Expr::isLvalue accordingly.
llvm-svn: 59638
and let the clients push whatever they want into the DiagnosticInfo
instead of hard coding a few forms. Also switch various clients to
use Diag(Tok, ...) instead of Diag(Tok.getLocation(), ...) as the
canonical form to simplify the code a bit.
llvm-svn: 59509
operators. For example, one can now write "x + y" where x or y is a
class or enumeration type, and Clang will perform overload resolution
for "+" based on the overloaded operators it finds.
The other kinds of overloadable operators in C++ will follow this same
approach.
Three major issues remain:
1) We don't find member operators
2) Since we don't have user-defined conversion operators, we can't
call any of the built-in overloaded operators in C++ [over.built].
3) Once we've done the semantic checks, we drop the overloaded
operator on the floor; it doesn't get into the AST at all.
llvm-svn: 58821
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
llvm-svn: 58817
-The Parser calls a new "ActOnCXXTypeConstructExpr" action.
-Sema, depending on the type and expressions number:
-If the type is a class, it will treat it as a class constructor. [TODO]
-If there's only one expression (i.e. "int(0.5)" ), creates a new "CXXFunctionalCastExpr" Expr node
-If there are no expressions (i.e "int()" ), creates a new "CXXZeroInitValueExpr" Expr node.
llvm-svn: 55177
-Remove ParseExpressionWithLeadingIdentifier and ParseAssignmentExprWithLeadingIdentifier.
-Separate ParseLabeledStatement from ParseIdentifierStatement.
llvm-svn: 53376
Note that Parser::ParseCXXMemberSpecification is temporarily disabled until the Sema support is in place.
Once ParseCXXMemberSpecification is enabled, the Parser/cxx-class.cpp test will pass.
llvm-svn: 52694
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402