ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
To bugs additionally fixed:
assert is moved after the check whether loop is not a nullptr.
Usage of isLoopEntryGuardedByCond in ScalarEvolution::isImpliedCondOperandsViaNoOverflow
is guarded by isAvailableAtLoopEntry.
Reviewers: sanjoy, mkazantsev, anna, dorit, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42417
llvm-svn: 324204
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
Reviewers: sanjoy, mkazantsev, anna, dorit
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42165
llvm-svn: 323077
We cannot move the insertion point to header if SCEV contains div/rem
operations due to they may go over check for zero denominator.
Reviewers: sanjoy, mkazantsev, sebpop
Reviewed By: sebpop
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41229
llvm-svn: 320789
Summary:
The function is meant to recurse until it comes upon the
phi it's looking for. However, with the current condition,
it will recurse until it finds anything _but_ the phi.
The function will even fail for simple cases like:
%i = phi i32 [ %inc, %loop ], ...
...
%inc = add i32 %i, 1
because the base condition will not happen when the phi
is recursed to, and the recursion will end with a 'false'
result since the previous instruction is a phi.
Reviewers: sanjoy, atrick
Reviewed By: sanjoy
Subscribers: Ka-Ka, bjope, llvm-commits
Committing on behalf of: Bevin Hansson (bevinh)
Differential Revision: https://reviews.llvm.org/D40946
llvm-svn: 320700
Turns out we can have comparisons which are indirect users of the induction variable that we can make invariant. In this case, there is no loop invariant value contributing and we'd fail an assert.
The test case was found by a java fuzzer and reduced. It's a real cornercase. You have to have a static loop which we've already proven only executes once, but haven't broken the backedge on, and an inner phi whose result can be constant folded by SCEV using exit count reasoning but not proven by isKnownPredicate. To my knowledge, only the fuzzer has hit this case.
llvm-svn: 319583
As noted in the nice block comment, the previous code didn't actually handle multi-entry loops correctly, it just assumed SCEV didn't analyze such loops. Given SCEV has comments to the contrary, that seems a bit suspect. More importantly, the pass actually requires loopsimplify form which ensures a loop-preheader is available. Remove the excessive generaility and shorten the code greatly.
Note that we do successfully analyze many multi-entry loops, but we do so by converting them to single entry loops. See the added test case.
llvm-svn: 316976
This patch allows SCEVFindUnsafe algorithm to tread division by any non-positive
value as safe. Previously, it could only recognize non-zero constants.
Differential Revision: https://reviews.llvm.org/D39228
llvm-svn: 316568
The type of a SCEVConstant may not match the corresponding LLVM Value.
In this case, we skip the constant folding for now.
TODO: Replace ConstantInt Zero by ConstantPointerNull
llvm-svn: 314531
This patch tries to transform cases like:
for (unsigned i = 0; i < N; i += 2) {
bool c0 = (i & 0x1) == 0;
bool c1 = ((i + 1) & 0x1) == 1;
}
To
for (unsigned i = 0; i < N; i += 2) {
bool c0 = true;
bool c1 = true;
}
This commit also update test/Transforms/IndVarSimplify/replace-srem-by-urem.ll to prevent constant folding.
Differential Revision: https://reviews.llvm.org/D38272
llvm-svn: 314266
Since now SCEV can handle 'urem', an 'urem' is a better canonical form than an 'srem' because it has well-defined behavior
This is a follow up of D34598
Differential Revision: https://reviews.llvm.org/D38072
llvm-svn: 314125
If SCEV can prove that the backedge taken count for a loop is zero, it does not
need to "understand" a recursive PHI to compute its exiting value.
This should fix PR33885.
llvm-svn: 309758
The patch was reverted due to a bug. The bug was that if the IV is the 2nd operand of the icmp
instruction, then the "Pred" variable gets swapped and differs from the instruction's predicate.
In this patch we use the original predicate to do the transformation.
Also added a test case that exercises this situation.
Differentian Revision: https://reviews.llvm.org/D35107
llvm-svn: 307477
It seems that the patch was reverted by mistake. Clang testing showed failure of the
MathExtras.SaturatingMultiply test, however I was unable to reproduce the issue on the
fresh code base and was able to confirm that the transformation introduced by the change
does not happen in the said test. This gives a strong confidence that the actual reason of
the failure of the initial patch was somewhere else, and that problem now seems to be
fixed. Re-submitting the change to confirm that.
llvm-svn: 307244
This adds exact flags to AShr/LShr flags where we can statically
prove it is valid using the range of induction variables. This
allows further optimisations to remove extra loads.
Differential Revision: https://reviews.llvm.org/D34207
llvm-svn: 307157
This patch seems to cause failures of test MathExtras.SaturatingMultiply on
multiple buildbots. Reverting until the reason of that is clarified.
Differential Revision: https://reviews.llvm.org/rL307126
llvm-svn: 307135
-If there is a IndVar which is known to be non-negative, and there is a value which is also non-negative,
then signed and unsigned comparisons between them produce the same result. Both of those can be
seen in the same loop. To allow other optimizations to simplify them, we turn all instructions like
%c = icmp slt i32 %iv, %b
to
%c = icmp ult i32 %iv, %b
if both %iv and %b are known to be non-negative.
Differential Revision: https://reviews.llvm.org/D34979
llvm-svn: 307126
MulOpsInlineThreshold option of SCEV is defaulted to 1000, which is inadequately high.
When constructing SCEVs of expressions like:
x1 = a * a
x2 = x1 * x1
x3 = x2 * x2
...
We actually have huge SCEVs with max allowed amount of operands inlined.
Such expressions are easy to get from unrolling of loops looking like
x = a
for (i = 0; i < n; i++)
x = x * x
Or more tricky cases where big powers are involved. If some non-linear analysis
tries to work with a SCEV that has 1000 operands, it may lead to excessively long
compilation. The attached test does not pass within 1 minute with default threshold.
This patch decreases its default value to 32, which looks much more reasonable if we
use analyzes with complexity O(N^2) or O(N^3) working with SCEV.
Differential Revision: https://reviews.llvm.org/D34397
llvm-svn: 305882
This change adds an option disable-lftr to be able to disable Linear Function Test Replace optimization.
By default option is off so current behavior is not changed.
Reviewers: reames, sanjoy, wmi, andreadb, apilipenko
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33979
llvm-svn: 305055
Transforms/IndVarSimplify/2011-10-27-lftrnull will fail if this regresses.
Transforms/GVN/PRE/2011-06-01-NonLocalMemdepMiscompile.ll has been changed to still test what it was
trying to test.
llvm-svn: 302446
Since there is no sdiv in SCEV, an 'udiv' is a better canonical form than an 'sdiv' as the user of induction variable
Differential Revision: https://reviews.llvm.org/D31488
llvm-svn: 299118
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
Summary:
Previously we used to return a bogus result, 0, for IR like `ashr %val,
-1`.
I've also added an assert checking that `ComputeNumSignBits` at least
returns 1. That assert found an already checked in test case where we
were returning a bad result for `ashr %val, -1`.
Fixes PR32045.
Reviewers: spatel, majnemer
Reviewed By: spatel, majnemer
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30311
llvm-svn: 296273
When both WidenIV::getWideRecurrence and WidenIV::getExtendedOperandRecurrence
return non-null but different WideAddRec, if getWideRecurrence is called
before getExtendedOperandRecurrence, we won't bother to call
getExtendedOperandRecurrence again. But As we know it is possible that after
SCEV folding, we cannot prove the legality using the SCEVAddRecExpr returned
by getWideRecurrence. Meanwhile if getExtendedOperandRecurrence returns non-null
WideAddRec, we know for sure that it is legal to do widening for current instruction.
So it is better to put getExtendedOperandRecurrence before getWideRecurrence, which
will increase the chance of successful widening.
Differential Revision: https://reviews.llvm.org/D26059
llvm-svn: 286987
This change is motivated by the case when IndVarSimplify doesn't widen a comparison of IV increment because it can't prove IV increment being non-negative. We end up with a redundant trunc of the widened increment on this example.
for.body:
%i = phi i32 [ %start, %for.body.lr.ph ], [ %i.inc, %for.inc ]
%within_limits = icmp ult i32 %i, 64
br i1 %within_limits, label %continue, label %for.end
continue:
%i.i64 = zext i32 %i to i64
%arrayidx = getelementptr inbounds i32, i32* %base, i64 %i.i64
%val = load i32, i32* %arrayidx, align 4
br label %for.inc
for.inc:
%i.inc = add nsw nuw i32 %i, 1
%cmp = icmp slt i32 %i.inc, %limit
br i1 %cmp, label %for.body, label %for.end
There is a range check inside of the loop which guarantees the IV to be non-negative. NSW on the increment guarantees that the increment is also non-negative. Teach IndVarSimplify to use the range check to prove non-negativity of loop increments.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D25738
llvm-svn: 284629
Summary:
The patch fixes regression caused by two earlier patches D18777 and D18867.
Reviewers: reames, sanjoy
Differential Revision: http://reviews.llvm.org/D24280
From: Li Huang
llvm-svn: 282650
This change needs to be reverted in order to revert -r278267 which cause performance regression on MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt from LNT and some other bechmarks.
See comments on https://reviews.llvm.org/D18777 for details.
llvm-svn: 279432
`IVVisitor::visitCast` used to have the invariant that if the
instruction it was passed was a sext or zext instruction, the result of
the instruction would be wider than the induction variable. This is no
longer true after rL275037, so this change teaches `IndVarSimplify` s
implementation of `IVVisitor::visitCast` to work with the relaxed
invariant.
A corresponding change to SimplifyIndVar to preserve the said invariant
after rL275037 would also work, but given how `IVVisitor::visitCast` is
spelled (no indication of said invariant), I figured the current fix is
cleaner.
Fixes PR28935.
llvm-svn: 278584
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).
https://reviews.llvm.org/D23075
llvm-svn: 278421
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
https://reviews.llvm.org/D23075
llvm-svn: 278334
Some of these tests need to be cleaned up further to make it obvious
what they're testing, but as a first step remove all instances of
"grep".
llvm-svn: 277648
Summary:
There are some rough corners, since the new pass manager doesn't have
(as far as I can tell) LoopSimplify and LCSSA, so I've updated the
tests to run them separately in the old pass manager in the lit tests.
We also don't have an equivalent for AU.setPreservesCFG() in the new
pass manager, so I've left a FIXME.
Reviewers: bogner, chandlerc, davide
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20783
llvm-svn: 271846
Summary:
If we can prove that an op.with.overflow intrinsic does not overflow, we
can get rid of the intrinsic, and replace it with non-wrapping
arithmetic.
This was first checked in at r265913 but reverted in r265950 because it
exposed some issues around how SCEV handled post-inc add recurrences.
Those issues have now been fixed.
Reviewers: atrick, regehr
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18685
llvm-svn: 271153
Fixes PR27315.
The post-inc version of an add recurrence needs to "follow the same
rules" as a normal add or subtract expression. Otherwise we miscompile
programs like
```
int main() {
int a = 0;
unsigned a_u = 0;
volatile long last_value;
do {
a_u += 3;
last_value = (long) ((int) a_u);
if (will_add_overflow(a, 3)) {
// Leave, and don't actually do the increment, so no UB.
printf("last_value = %ld\n", last_value);
exit(0);
}
a += 3;
} while (a != 46);
return 0;
}
```
This patch changes SCEV to put no-wrap flags on post-inc add recurrences
only when the poison from a potential overflow will go ahead to cause
undefined behavior.
To avoid regressing performance too much, I've assumed infinite loops
without side effects is undefined behavior to prove poison<->UB
equivalence in more cases. This isn't ideal, but is not new to LLVM as
a whole, and far better than the situation I'm trying to fix.
llvm-svn: 271151
Summary:
If we can prove that an op.with.overflow intrinsic does not overflow, we
can get rid of the intrinsic, and replace it with non-wrapping
arithmetic.
Reviewers: atrick, regehr
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18685
llvm-svn: 265913
Widening a PHI requires us to insert a trunc.
The logical place for this trunc is in the same BB as the PHI.
This is not possible if the BB is terminated by a catchswitch.
This fixes PR27133.
llvm-svn: 264926