This commit does this using a trivial chain of conditional branches. In the
future, we probably want to reuse the optimized switch lowering used in
SelectionDAG.
Differential Revision: https://reviews.llvm.org/D28176
llvm-svn: 291099
The IRTranslator uses an additional block before the LLVM-IR entry block
to perform all the ABI lowering and the constant hoisting. Thus, this
block is the actual entry block and it falls through the LLVM-IR entry
block. However, with such representation, we end up with two basic
blocks that are not maximal.
Therefore, this patch adds a bit of canonicalization by merging both the
LLVM-IR entry block and the ABI lowering/constants hoisting into one
block, making the resulting block more likely to be maximal (indeed the
LLVM-IR entry block might not have been maximal).
llvm-svn: 289891
Supporting them properly is a reasonably complex chunk of work, so to allow bot
testing before then we should at least be able to fall back to DAG ISel.
llvm-svn: 289150
ConstantExpr instances were emitting code into the current block rather than
the entry block. This meant they didn't necessarily dominate all uses, which is
clearly wrong.
llvm-svn: 288985
Having to ask the MIRBuilder for the current function is a little awkward, and
I'm intending to improve how that's threaded through anyway.
llvm-svn: 288983
MachineIRBuilder had weird before/after and beginning/end flags for the insert
point. Unfortunately the non-default means that instructions will be inserted
in reverse order which is almost never what anyone wants.
Really, I think we just want (like IRBuilder has) the ability to insert at any
C++ iterator-style point (i.e. before any instruction or before MBB.end()). So
this fixes MIRBuilders to behave like IRBuilders in this respect.
llvm-svn: 288980
The function used to finish off PHIs by adding the relevant basic blocks can
fail if we're aborting and still don't actually have the needed
MachineBasicBlocks. So avoid trying in that case.
llvm-svn: 288727
When the entry block was empty after arg lowering, we were always placing
constants at the end. This is probably hamrless while translating the same
block, but horribly wrong once its terminator has been translated. So switch to
inserting at the beginning.
llvm-svn: 288720
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
llvm-svn: 288712
Returning 0 (NoReg) from getOrCreateVReg leads to unexpected situations later
in the translation. It's better to return a valid (if undefined) register and
let the rest of the instruction carry on as planned.
llvm-svn: 288709
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
They're not SelectionDAG- or FunctionLoweringInfo-specific. They
are, however, specific to building MMI from IR.
We could make them members, but it's nice having MMI be a "simple" data
structure and this logic kept separate.
This also lets us reuse them from GlobalISel.
llvm-svn: 287167
The only implementation that exists immediately looks it up anyway, and the
information is needed to handle various parameter attributes (stored on the
function itself).
llvm-svn: 282068
This should match the existing behaviour for passing complicated struct and
array types, in particular HFAs come through like that from Clang.
For C & C++ we still need to somehow support all the weird ABI flags, or at
least those that are present in the IR (signext, byval, ...), and stack-based
parameter passing.
llvm-svn: 281977
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
Unlike SDag, we use a separate G_GEP instruction (much simplified, only taking
a single byte offset) to preserve the pointer type information through
selection.
llvm-svn: 281205
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
They're another source of generic vregs, which are going to need a type on the
definition when we remove the register width from MachineRegisterInfo.
llvm-svn: 280412
There should be no functional change here, I'm just making the implementation
of "frem" (to libcall) legalization easier for a followup.
llvm-svn: 279987
This adds a G_INSERT instruction, which technically makes G_SEQUENCE redundant
(it's equivalent to a G_INSERT into an IMPLICIT_DEF). We'll leave G_SEQUENCE
for now though: it's likely to be far more common as it's a fundamental part of
legalization, so avoiding the mess and bloat of the extra IMPLICIT_DEFs is
probably worthwhile.
llvm-svn: 279306
First, make sure all types involved are represented, rather than being implicit
from the register width.
Second, canonicalize all types to scalar. These operations just act in bits and
don't care about vectors.
Also standardize spelling of Indices in the MachineIRBuilder (NFC here).
llvm-svn: 279294
Unsigned addition and subtraction can reuse the instructions created to
legalize large width operations (i.e. both produce and consume a carry flag).
Signed operations and multiplies get a dedicated op-with-overflow instruction.
Once this is produced the two values are combined into a struct register (which
will almost always be merged with a corresponding G_EXTRACT as part of
legalization).
llvm-svn: 279278
It's sharing the integer G_CONSTANT for now since I don't *think* it creates
any ambiguity (even on weird archs). If that turns out wrong we can create a
G_PTRCONSTANT or something.
llvm-svn: 278423
It's more than just inttoptr, but the others can't be tested until we have
support for non-trivial constants (they currently get unavoidably folded to a
ConstantInt).
llvm-svn: 278303