When LLVM_TOOL_LLVM_DRIVER_BUILD is On, create symlinks
to llvm instead of creating the executables. Currently
this only works for install and not
install-distribution, the work for the later will be
split up into a second patch.
Differential Revision: https://reviews.llvm.org/D127800
This caused build failures when building Clang and libc++ together on Mac:
fatal error: 'experimental/memory_resource' file not found
See the code review for details. Reverting until the problem and how to
solve it is better understood.
(Updates to some test files were not reverted, since they seemed
unrelated and were later updated by 340b48b267b96.)
> This is the first part of a plan to ship experimental features
> by default while guarding them behind a compiler flag to avoid
> users accidentally depending on them. Subsequent patches will
> also encompass incomplete features (such as <format> and <ranges>)
> in that categorization. Basically, the idea is that we always
> build and ship the c++experimental library, however users can't
> use what's in it unless they pass the `-funstable` flag to Clang.
>
> Note that this patch intentionally does not start guarding
> existing <experimental/FOO> content behind the flag, because
> that would merely break users that might be relying on such
> content being in the headers unconditionally. Instead, we
> should start guarding new TSes behind the flag, and get rid
> of the existing TSes we have by shipping their Standard
> counterpart.
>
> Also, this patch must jump through a few hoops like defining
> _LIBCPP_ENABLE_EXPERIMENTAL because we still support compilers
> that do not implement -funstable yet.
>
> Differential Revision: https://reviews.llvm.org/D128927
This reverts commit bb939931a1.
Fuchsia already uses libunwind, but it does so implicitly via libc++.
This change makes the unwinder choice explicit.
Differential Revision: https://reviews.llvm.org/D127887
We currently have an option to select C++ ABI and C++ library for tests
but there are runtimes that use C++ library, specifically ORC and XRay,
which aren't covered by existing options. This change introduces a new
option to control the use of C++ libray for these runtimes.
Ideally, this option should become the default way to select C++ library
for all of compiler-rt replacing the existing options (the C++ ABI
option could remain as a hidden internal option).
Differential Revision: https://reviews.llvm.org/D128036
This is the first part of a plan to ship experimental features
by default while guarding them behind a compiler flag to avoid
users accidentally depending on them. Subsequent patches will
also encompass incomplete features (such as <format> and <ranges>)
in that categorization. Basically, the idea is that we always
build and ship the c++experimental library, however users can't
use what's in it unless they pass the `-funstable` flag to Clang.
Note that this patch intentionally does not start guarding
existing <experimental/FOO> content behind the flag, because
that would merely break users that might be relying on such
content being in the headers unconditionally. Instead, we
should start guarding new TSes behind the flag, and get rid
of the existing TSes we have by shipping their Standard
counterpart.
Also, this patch must jump through a few hoops like defining
_LIBCPP_ENABLE_EXPERIMENTAL because we still support compilers
that do not implement -funstable yet.
Differential Revision: https://reviews.llvm.org/D128927
Fuchsia already uses libunwind, but it does so implicitly via libc++.
This change makes the unwinder choice explicit.
Differential Revision: https://reviews.llvm.org/D127887
This allows configuring LLVM unwinder separately from the C++ library
matching how we configure it in libcxx.
This also applies changes made to libunwind+libcxxabi+libcxx in D113253
to compiler-rt.
Differential Revision: https://reviews.llvm.org/D115674
First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS
builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as
`CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when
downstream projects try to install there too this breaks because our
builds always install to fresh directories for isolation's sake.
Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the
other specially crafted `LLVM_CONFIG_*` variables substituted in
`llvm/cmake/modules/LLVMConfig.cmake.in`.
@beanz added it in d0e1c2a550 to fix a
dangling reference in `AddLLVM`, but I am suspicious of how this
variable doesn't follow the pattern.
Those other ones are carefully made to be build-time vs install-time
variables depending on which `LLVMConfig.cmake` is being generated, are
carefully made relative as appropriate, etc. etc. For my NixOS use-case
they are also fine because they are never used as downstream install
variables, only for reading not writing.
To avoid the problems I face, and restore symmetry, I deleted the
exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s.
`AddLLVM` now instead expects each project to define its own, and they
do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports
`LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in
the usual way, matching the other remaining exported variables.
For the `AddLLVM` changes, I tried to copy the existing pattern of
internal vs non-internal or for LLVM vs for downstream function/macro
names, but it would good to confirm I did that correctly.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D117977
This patch adds an llvm-driver multicall tool that can combine multiple
LLVM-based tools. The build infrastructure is enabled for a tool by
adding the GENERATE_DRIVER option to the add_llvm_executable CMake
call, and changing the tool's main function to a canonicalized
tool_name_main format (i.e. llvm_ar_main, clang_main, etc...).
As currently implemented llvm-driver contains dsymutil, llvm-ar,
llvm-cxxfilt, llvm-objcopy, and clang (if clang is included in the
build).
llvm-driver can be enabled from builds by setting
LLVM_TOOL_LLVM_DRIVER_BUILD=On.
There are several limitations in the current implementation, which can
be addressed in subsequent patches:
(1) the multicall binary cannot currently properly handle
multi-dispatch tools. This means symlinking llvm-ranlib to llvm-driver
will not properly result in llvm-ar's main being called.
(2) the multicall binary cannot be comprised of tools containing
conflicting cl::opt options as the global cl::opt option list cannot
contain duplicates.
These limitations can be addressed in subsequent patches.
Differential revision: https://reviews.llvm.org/D109977
We want to build libunwind, libc++abi and libc++ as universal libraries
supporting both x86_64 and arm64 architectures.
Differential Revision: https://reviews.llvm.org/D125908
This patch overhauls how we pick up the ABI library. Instead of setting
ad-hoc flags, it creates interface targets that can be linked against by
the rest of the build, which is easier to follow and extend to support
new ABI libraries.
This is intended to be a NFC change, however there are some additional
simplifications and improvements we can make in the future that would
require a slight behavior change.
Differential Revision: https://reviews.llvm.org/D120727
These files are out of date and haven't been updated to work within the
monorepo. This change updates them appropriately so that they build
using the monorepo build infrastructure.
We don't need these in the first stage compiler and disabling these
helps a bit with the compile time and runtime performance.
Differential Revision: https://reviews.llvm.org/D120280
This patch writes the full -cc1 command into the resulting .OBJ, like MSVC does. This allows for external tools (Recode, Live++) to rebuild a source file without any external dependency but the .OBJ itself (other than the compiler) and without knowledge of the build system.
The LF_BUILDINFO record stores a full path to the compiler, the PWD (CWD at program startup), a relative or absolute path to the source, and the full CC1 command line. The stored command line is self-standing (does not depend on the environment). In the same way, MSVC doesn't exactly store the provided command-line, but an expanded version (a somehow equivalent of CC1) which is also self-standing.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
LLVM has a documented mechanism for passing configuration information to
an out of tree project using CMake. See
https://llvm.org/docs/CMake.html#embedding-llvm-in-your-project.
Similar logic applies to "standalone" builds of other sub-projects
within LLVM that depend on each other. For example, a standalone build
of Flang will use this mechanism to acquire Clang's configuration.
Currently, the relevant CMake modules for Clang will only be copied into
the installation directory. This means that in order to configure a
standalone build of Flang, one has to first build and then install
Clang. This is not required for LLVM nor for MLIR - other sub-projects
that Flang depends on (i.e. the CMake modules for LLVM and MLIR are
available in the build dir, so installation is not needed).
This change removes the need for installing Clang in order to access its
configuration. It makes sure that the required CMake modules are copied
into the build directory. This will make Clang behave consistently with
LLVM and MLIR in this respect. It will also simplify building Flang as
standalone sub-project.
Differential Revision: https://reviews.llvm.org/D116731
See the docs in the new function for details.
I think I found every instance of this copy pasted code. Polly could
also use it, but currently does something different, so I will save the
behavior change for a future revision.
We get the shared, non-installed CMake modules following the pattern
established in D116472.
It might be good to have LLD and Flang also use this, but that would be
a functional change and so I leave it as future work.
Reviewed By: beanz, lebedev.ri
Differential Revision: https://reviews.llvm.org/D116521
We don't build libcxxabi and libunwind for Windows so don't set the
corresponding variables to avoid configuration errors.
Differential Revision: https://reviews.llvm.org/D113729
Reapply 5692ed0cce, but with the ORC runtime disabled explicitly on
CrossWinToARMLinux to match the other compiler-rt runtime libraries.
Differential Revision: https://reviews.llvm.org/D112229
---
Enable building the ORC runtime for 64-bit and 32-bit ARM architectures,
and for all Darwin embedded platforms (iOS, tvOS, and watchOS). This
covers building the cross-platform code, but does not add TLV runtime
support for the new architectures, which can be added independently.
Incidentally, stop building the Mach-O TLS support file unnecessarily on
other platforms.
Differential Revision: https://reviews.llvm.org/D112111