Commit Graph

22 Commits

Author SHA1 Message Date
Arthur Eubanks a95796a380 [NewPM][LoopUnroll] Rename unroll* to loop-unroll*
The legacy pass is called "loop-unroll", but in the new PM it's called "unroll".
Also applied to unroll-and-jam and unroll-full.

Fixes various check-llvm tests when NPM is turned on.

Reviewed By: Whitney, dmgreen

Differential Revision: https://reviews.llvm.org/D82590
2020-06-26 09:28:32 -07:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Fedor Sergeev 412ed34744 [LoopUnroll] allow customization for new-pass-manager version of LoopUnroll
Unlike its legacy counterpart new pass manager's LoopUnrollPass does
not provide any means to select which flavors of unroll to run
(runtime, peeling, partial), relying on global defaults.

In some cases having ability to run a restricted LoopUnroll that
does more than LoopFullUnroll is needed.

Introduced LoopUnrollOptions to select optional unroll behaviors.
Added 'unroll<peeling>' to PassRegistry mainly for the sake of testing.

Reviewers: chandlerc, tejohnson
Differential Revision: https://reviews.llvm.org/D53440

llvm-svn: 345723
2018-10-31 14:33:14 +00:00
Fedor Sergeev f923e86205 [LoopUnroll] NFC. Factor out runtime-loop.ll common test behavior.
Adding COMMON prefix to get common part handled there.
Needed to simplify test changes for D53440.

llvm-svn: 345538
2018-10-29 20:38:23 +00:00
Teresa Johnson ecd901314d [PM] Split LoopUnrollPass and make partial unroller a function pass
Summary:
This is largely NFC*, in preparation for utilizing ProfileSummaryInfo
and BranchFrequencyInfo analyses. In this patch I am only doing the
splitting for the New PM, but I can do the same for the legacy PM as
a follow-on if this looks good.

*Not NFC since for partial unrolling we lose the updates done to the
loop traversal (adding new sibling and child loops) - according to
Chandler this is not very useful for partial unrolling, but it also
means that the debugging flag -unroll-revisit-child-loops no longer
works for partial unrolling.

Reviewers: chandlerc

Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D36157

llvm-svn: 309886
2017-08-02 20:35:29 +00:00
Anna Thomas 8e431a9851 [LoopUnrollRuntime] NFC: Refactored safety checks of unrolling multi-exit loop
Refactored the code and separated out a function
`canSafelyUnrollMultiExitLoop` to reduce redundant checks and make it
easier to add profitability heuristics later.
Added tests to runtime unrolling to make sure that unrolling for
multi-exit loops is not done unless the option
-unroll-runtime-multi-exit is true.

llvm-svn: 307843
2017-07-12 20:55:43 +00:00
Chandler Carruth ce40fa13ce [PM] Teach LoopUnroll to update the LPM infrastructure as it unrolls
loops.

We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.

I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.

Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.

Differential Revision: https://reviews.llvm.org/D28848

llvm-svn: 293011
2017-01-25 02:49:01 +00:00
Michael Zolotukhin b2738e41bf [LoopUnroll] Switch the default value of -unroll-runtime-epilog back to its original value.
As agreed in post-commit review of r265388, I'm switching the flag to
its original value until the 90% runtime performance regression on
SingleSource/Benchmarks/Stanford/Bubblesort is addressed.

llvm-svn: 277524
2016-08-02 21:24:14 +00:00
Michael Zolotukhin d9b6ad3c01 [LoopUnroll] Ensure we create prolog loops in simplified form.
llvm-svn: 277502
2016-08-02 19:19:31 +00:00
Evgeny Stupachenko 23ce61b663 The patch fixes PR27392.
Summary:
 It is incorrect to compare TripCount (which is BECount + 1)
  with extraiters (or Count) to check if we should enter unrolled
  loop or not, because TripCount can potentially overflow
  (when BECount is max unsigned integer).
 While comparing BECount with (Count - 1) is overflow safe and
  therefore correct.

Reviewer: hfinkel

Differential Revision: http://reviews.llvm.org/D19256

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 267662
2016-04-27 03:04:54 +00:00
David L Kreitzer 188de5ae69 Adds the ability to use an epilog remainder loop during loop unrolling and makes
this the default behavior.

Patch by Evgeny Stupachenko (evstupac@gmail.com).

Differential Revision: http://reviews.llvm.org/D18158

llvm-svn: 265388
2016-04-05 12:19:35 +00:00
Sanjoy Das e178f46965 [LoopUnrollRuntime] Avoid high-cost trip count computation.
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count.  Avoid runtime unrolling if this computation
will be expensive.

Depends on D8993.

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8994

llvm-svn: 234846
2015-04-14 03:20:38 +00:00
Kevin Qin 715b01e979 Introduce runtime unrolling disable matadata and use it to mark the scalar loop from vectorization.
Runtime unrolling is an expensive optimization which can bring benefit
only if the loop is hot and iteration number is relatively large enough.
For some loops, we know they are not worth to be runtime unrolled.
The scalar loop from vectorization is one of the cases.

llvm-svn: 231631
2015-03-09 06:14:18 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Sanjoy Das 11b279a832 Partial fix for bug 22589
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows.  This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.

Differential Revision: http://reviews.llvm.org/D7715

llvm-svn: 229731
2015-02-18 19:32:25 +00:00
Duncan P. N. Exon Smith 090a19bd3c IR: Add 'distinct' MDNodes to bitcode and assembly
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode).  This adds the `distinct` keyword to assembly.

Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:

  - self-references, which are never uniqued, and
  - nodes whose operands are replaced that hit a uniquing collision.

The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.

Part of PR22111.

llvm-svn: 225474
2015-01-08 22:38:29 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Kevin Qin fc02e3c363 Use a loop to simplify the runtime unrolling prologue.
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like

    extraiters = tripcount % loopfactor
    if (extraiters == 0) jump Loop:
    if (extraiters == loopfactor) jump L1
    if (extraiters == loopfactor-1) jump L2
    ...
    L1:  LoopBody;
    L2:  LoopBody;
    ...
    if tripcount < loopfactor jump End
    Loop:
    ...
    End:

It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like

        extraiters = tripcount % loopfactor
        if (extraiters == 0) jump Loop:
        else jump Prol
 Prol:  LoopBody;
        extraiters -= 1                 // Omitted if unroll factor is 2.
        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
        if (tripcount < loopfactor) jump End
 Loop:
 ...
 End:

Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.

llvm-svn: 218604
2014-09-29 11:15:00 +00:00
Benjamin Kramer 0bf086f80f LoopUnrollRuntime: Check for overflow in the trip count calculation.
Fixes PR19823.

llvm-svn: 211436
2014-06-21 13:46:25 +00:00
Andrew Trick d04d152998 Add -unroll-runtime for unrolling loops with run-time trip counts.
Patch by Brendon Cahoon!

This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.

llvm-svn: 146245
2011-12-09 06:19:40 +00:00