print the Objective-C runtime meta data for Mach-O files.
There are three types of Objective-C runtime meta data, Objc2 64-bit,
Objc2 32-bit and Objc1 32-bit. This prints the first of these types. The
changes to print the others will follow next.
llvm-svn: 233840
A while ago llvm-cov gained support for clang's instrumentation based
profiling in addition to its gcov support, and subcommands were added
to choose which behaviour to use. When no subcommand was specified, we
fell back to gcov compatibility with a warning that a subcommand would
be required in the future. Now, we require the subcommand.
Note that if the basename of llvm-cov is gcov (via symlink or
hardlink, for example), we still use the gcov compatible behaviour
with no subcommand required.
llvm-svn: 233132
It seems one windows bot fails since I added ilne table linking to
llvm-dsymutil (see r232333 commit thread).
Disable the affected tests until I can figure out what's happening.
llvm-svn: 233130
This works in a similar way to the gold plugin tests. We search for a compatible
linker on $PATH and use it to run tests against our just-built libLTO. To start
with, test the just added opt level functionality.
Differential Revision: http://reviews.llvm.org/D8472
llvm-svn: 232785
This change also introduces a link-time optimization level of 1. This
optimization level runs only the globaldce pass as well as cleanup passes for
passes that run at -O0, specifically simplifycfg which cleans up lowerbitsets.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150316/266951.html
llvm-svn: 232769
This makes the reader check the endianness of the object file its
given and behave appropriately. For the test I dug up a really old
linker and created a ppc-apple-darwin file for llvm-cov to read.
llvm-svn: 232422
This still doesn't actually work correctly for big endian input files,
but since these tests all use little endian input files they don't
actually fail. I'll be committing a real fix for big endian soon, but
I don't have proper tests for it yet.
llvm-svn: 232354
This code was casting regions of a memory buffer to a couple of
different structs. This is wrong in a few ways:
1. It breaks aliasing rules.
2. If the buffer isn't aligned, it hits undefined behaviour.
3. It completely ignores endianness differences.
4. The structs being defined for this aren't specifying their padding
properly, so this doesn't even represent the data properly on some
platforms.
This commit is mostly NFC, except that it fixes reading coverage for
32 bit binaries as a side effect of getting rid of the mispadded
structs. I've included a test for that.
I've also baked in that we only handle little endian more explicitly,
since that was true in practice already. I'll fix this to handle
endianness properly in a followup commit.
llvm-svn: 232346
The information gathering part of the patch stores a bit more information
than what is strictly necessary for these 2 sections. The rest will
become useful when we start emitting __apple_* type accelerator tables.
llvm-svn: 232342
This code comes with a lot of cruft that is meant to mimic darwin's
dsymutil behavior. A much simpler approach (described in the numerous
FIXMEs that I put in there) gives the right output for the vast
majority of cases. The extra corner cases that are handled differently
need to be investigated: they seem to correctly handle debug info that
is in the input, but that info looks suspicious in the first place.
Anyway, the current code needs to handle this, but I plan to revisit it
as soon as the big round of validation against the classic dsymutil is
over.
llvm-svn: 232333
The debug map embedded by ld64 in binaries conatins function sizes.
These sizes are less precise than the ones given by the debug information
(byte granularity vs linker atom granularity), but they might cover code
that is referenced in the line table but not in the DIE tree (that might
very well be a compiler bug that I need to investigate later).
Anyway, extracting that information is necessary to be able to mimic
dsymutil's behavior exactly.
llvm-svn: 232300
There is no need to look into the location expressions to transfer them,
the only modification to apply is to patch their base address to reflect
the linked function address.
llvm-svn: 232267
This actually shares most of its implementation with the generation
of the debug_ranges (the absence of 'a' is not a typo) contribution
for the unit's DW_AT_ranges attribute.
llvm-svn: 232246
Nothing fancy, just a straightforward offset to apply to the original
debug_ranges entries to get them in line with the linked addresses.
llvm-svn: 232232
We recorded the forward references in the CU that holds the referenced
DIE, but this is wrong as those will get resoled *after* the CU that
holds the reference. Record the references in their originating CU along
with a pointer to the remote CU to be able to compute the fixed up
offset at the right time.
llvm-svn: 232193
The typo got unnoticed because we were testing only on Dwarf 2. Add a
Dwarf4 test that exercises the code path, and also tests some newer
FORMs that the other test doesn't cover.
llvm-svn: 232191
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
using numeric values and not their symbolic constant names.
The routines that print Mach-O stuff already had a verbose parameter and this
change is just changing the passing true to passing !NonVerbose. With just a
couple of fixes and a bunch of test case updates.
llvm-svn: 232182
DW_AT_low_pc on functions is taken care of by the relocation processing, but
DW_AT_high_pc and DW_AT_low_pc on other lexical scopes need special handling.
llvm-svn: 231955
As of r231908, the test I added in r231902 actually gets run - but I'd
checked in a stale version of the input so it didn't pass. Fix the
input and un-xfail the test.
llvm-svn: 231911
There were also errors in the CHECK line which I fixed and the test
doesn't actually pass as the "100" is in the wrong line. Not sure
whether this is a test failure or a coverage failure so making the test
XFAIL for now.
llvm-svn: 231908
Doing this gets function's low_pc and global variable's locations right
in the output debug info. It also could get right other attributes
that need to be relocated (in linker terms), but I don't know of any
other than the address attributes.
This doesn't fixup low_pc attributes in compile_unit, lexical_block
or inlined subroutine, nor does it get right high_pc attributes
for function. This will come in a subsequent commit.
llvm-svn: 231544
Reference attributes are mainly handled by just creating DIEEntry
attributes for them. There is a special case for DW_FORM_ref_addr
attributes though, because the DIEEntry code needs a DwarfDebug
code to emit them (and we don't have one as we do no CodeGen).
In that case, just use DIEInteger attributes with the right form.
llvm-svn: 231531