This patch ensures that SHL/SRL/SRA shifts for i8 and i16 vectors avoid scalarization. It builds on the existing i8 SHL vectorized implementation of moving the shift bits up to the sign bit position and separating the 4, 2 & 1 bit shifts with several improvements:
1 - SSE41 targets can use (v)pblendvb directly with the sign bit instead of performing a comparison to feed into a VSELECT node.
2 - pre-SSE41 targets were masking + comparing with an 0x80 constant - we avoid this by using the fact that a set sign bit means a negative integer which can be compared against zero to then feed into VSELECT, avoiding the need for a constant mask (zero generation is much cheaper).
3 - SRA i8 needs to be unpacked to the upper byte of a i16 so that the i16 psraw instruction can be correctly used for sign extension - we have to do more work than for SHL/SRL but perf tests indicate that this is still beneficial.
The i16 implementation is similar but simpler than for i8 - we have to do 8, 4, 2 & 1 bit shifts but less shift masking is involved. SSE41 use of (v)pblendvb requires that the i16 shift amount is splatted to both bytes however.
Tested on SSE2, SSE41 and AVX machines.
Differential Revision: http://reviews.llvm.org/D9474
llvm-svn: 239509
For GEP instructions isDereferenceablePointer checks that all indices are constant and within bounds. Replace this index calculation logic to a call to accumulateConstantOffset. Separated from the http://reviews.llvm.org/D9791
Reviewed By: sanjoy
Differential Revision: http://reviews.llvm.org/D9874
llvm-svn: 239299
Summary:
We need to add a runtime memcheck for pair of accesses (x,y) where at least one of x and y
are writes.
Assuming we have w writes and r reads, currently this number is estimated as being
w* (w+r-1). This estimation will count (write,write) pairs twice and will overestimate
the number of checks required.
This change adds a getNumberOfChecks method to RuntimePointerCheck, which
will count the number of runtime checks needed (similar in implementation to
needsAnyChecking) and uses it to produce the correct number of runtime checks.
Test Plan:
llvm test suite
spec2k
spec2k6
Performance results: no changes observed (not surprising since the formula for 1 writer is basically the same, which would covers most cases - at least with the current check limit).
Reviewers: anemet
Reviewed By: anemet
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D10217
llvm-svn: 239295
Summary:
In continuation to an earlier commit to DependenceAnalysis.cpp by jingyue (r222100), the type for all subscripts in a coupled group need to be the same since constraints from one subscript may be propagated to another during testing. During testing, new SCEVs may be created and the operands for these need to be the same.
This patch extends unifySubscriptType() to work on lists of subscript pairs, ensuring a common extended type for all of them.
Test Plan:
Added a test case to NonCanonicalizedSubscript.ll which causes dependence analysis to crash without this fix.
All regression tests pass.
Reviewers: spop, sebpop, jingyue
Reviewed By: jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9698
llvm-svn: 238573
One of the testcases introduced by D9365 had incorrect !dereferenceable metadata on load. It must fail but it doesn't due to incorrect order of CHECK/CHECK-NOT commands in test. Fixed both.
Reviewed By: sanjoy
Differential Revision: http://reviews.llvm.org/D9877
llvm-svn: 237897
Summary:
Introduce dereferenceable, dereferenceable_or_null metadata for loads
with the same semantic as corresponding attributes.
This patch depends on http://reviews.llvm.org/D9253
Patch by Artur Pilipenko!
Reviewers: hfinkel, sanjoy, reames
Reviewed By: sanjoy, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9365
llvm-svn: 237720
When dependence analysis encounters a non-constant distance between
memory accesses it aborts the analysis and falls back to run-time checks
only. In this case we weren't resetting the array of dependences.
llvm-svn: 237574
"Store to invariant address..." is moved as the last line. This is not
the prime result of the analysis. Plus it simplifies some of the tests.
llvm-svn: 237573
collectUpperBound hits an assertion when the back edge count is wider then the desired type.
If that happens, truncate the backedge count.
Patch by Philip Pfaffe!
llvm-svn: 237439
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
llvm-svn: 237214
Summary:
Now it's much easier to follow what's happening in this test.
Also removed some unused metadata entries.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9601
llvm-svn: 236981
Summary:
There are several unhandled edge cases in BasicAA's GetLinearExpression
method. This changes fixes outstanding issues, including zext / sext of
a constant with the sign bit set, and the refusal to decompose zexts or
sexts of wrapping arithmetic.
Test Plan: Unit tests added in //q.ext.ll//.
Patch by Nick White.
Reviewers: hfinkel, sanjoy
Reviewed By: hfinkel, sanjoy
Subscribers: sanjoy, llvm-commits, hfinkel
Differential Revision: http://reviews.llvm.org/D6682
llvm-svn: 236894
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
llvm-svn: 236888
Summary:
This addresses PR 22718. When branch weights are too large, they were
being clamped to the range [1, MaxWeightForBB]. But this clamping is
only applied to edges that go outside the range, so it distorts the
relative branch probabilities.
This patch changes the weight calculation to scale every branch so the
relative probabilities are preserved. The scaling is done differently
now. First, all the branch weights are added up, and if the sum exceeds
32 bits, it computes an integer scale to bring all the weights within
the range.
The patch fixes an existing test that had slightly wrong branch
probabilities due to the previous clamping. It now gets branch weights
scaled accordingly.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9442
llvm-svn: 236750
Specifically, if a pointer accesses different underlying objects in each
iteration, don't look through the phi node defining the pointer.
The motivating case is the underlyling-objects-2.ll testcase. Consider
the loop nest:
int **A;
for (i)
for (j)
A[i][j] = A[i-1][j] * B[j]
This loop is transformed by Load-PRE to stash away A[i] for the next
iteration of the outer loop:
Curr = A[0]; // Prev_0
for (i: 1..N) {
Prev = Curr; // Prev = PHI (Prev_0, Curr)
Curr = A[i];
for (j: 0..N)
Curr[j] = Prev[j] * B[j]
}
Since A[i] and A[i-1] are likely to be independent pointers,
getUnderlyingObjects should not assume that Curr and Prev share the same
underlying object in the inner loop.
If it did we would try to dependence-analyze Curr and Prev and the
analysis of the corresponding SCEVs would fail with non-constant
distance.
To fix this, the getUnderlyingObjects API is extended with an optional
LoopInfo parameter. This is effectively what controls whether we want
the above behavior or the original. Currently, I only changed to use
this approach for LoopAccessAnalysis.
The other testcase is to guard the opposite case where we do want to
look through the loop PHI. If we step through an array by incrementing
a pointer, the underlying object is the incoming value of the phi as the
loop is entered.
Fixes rdar://problem/19566729
llvm-svn: 235634
An assert was triggered when attempting to create a new SCEV
with operands of different types in the visitAddRecExpr. In this
test case, the operand types of the numerator and denominator
are different. The SCEV division code should generate a
conservative answer when this happens.
Differential Revision: http://reviews.llvm.org/D9021
llvm-svn: 235511
n/1 generates a quotient equal to n and a remainder of 0.
If this case is not recognized, then the SCEV divide() function
can return a remainder that is greater than or equal to the
denominator, which means the delinearized subscripts for the
test case will be incorrect.
Differential Revision: http://reviews.llvm.org/D9003
llvm-svn: 235311
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
This commit makes LLVM not estimate branch probabilities when doing a
single bit bitmask tests.
The code that originally made me discover this is:
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information
and should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
CodeGen/ARM/2013-10-11-select-stalls.ll started failing because the
changed probabilities changed the results of
ARMBaseInstrInfo::isProfitableToIfCvt() and led to an Ifcvt of the
diamond in the test. AFAICT, the test was never meant to test this and
thus changing the test input slightly to not change the probabilities
seems like the best way to preserve the meaning of the test.
llvm-svn: 234979
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information and
should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
llvm-svn: 234898
Fix oversight in -analyze output. PtrRtCheck contains the pointers that
need to be checked against each other and not whether memchecks are
necessary.
For instance in the testcase PtrRtCheck has four elements but all
no-alias so no checking is necessary.
llvm-svn: 234833
Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.
Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll
Reviewers: resistor, hfinkel, eliben, meheff, jholewinski
Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8576
llvm-svn: 234567
(Re-apply r234361 with a fix and a testcase for PR23157)
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
llvm-svn: 234424
Both run-time pointer checking and the dependence analysis are capable
of dealing with uniform addresses. I.e. it's really just an orthogonal
property of the loop that the analysis computes.
Run-time pointer checking will only try to reason about SCEVAddRec
pointers or else gives up. If the uniform pointer turns out the be a
SCEVAddRec in an outer loop, the run-time checks generated will be
correct (start and end bounds would be equal).
In case of the dependence analysis, we work again with SCEVs. When
compared against a loop-dependent address of the same underlying object,
the difference of the two SCEVs won't be constant. This will result in
returning an Unknown dependence for the pair.
When compared against another uniform access, the difference would be
constant and we should return the right type of dependence
(forward/backward/etc).
The changes also adds support to query this property of the loop and
modify the vectorizer to use this.
Patch by Ashutosh Nema!
llvm-svn: 234361
Summary:
This change teaches ScalarEvolution::isLoopBackedgeGuardedByCond to look
at edges within the loop body that dominate the latch. We don't do an
exhaustive search for all possible edges, but only a quick walk up the
dom tree.
This re-lands r233447. r233447 was reverted because it caused massive
compile-time regressions. This change has a fix for the same issue.
llvm-svn: 233829
Summary:
This is part 1 of fixes to address the problems described in
https://llvm.org/bugs/show_bug.cgi?id=22719.
The restriction to limit loop scales to 4,096 does not really prevent
overflows anymore, as the underlying algorithm has changed and does
not seem to suffer from this problem.
Additionally, artificially restricting loop scales to such a low number
skews frequency information, making loops of equal hotness appear to
have very different hotness properties.
The only loops that are artificially restricted to a scale of 4096 are
infinite loops (those loops with an exit mass of 0). This prevents
infinite loops from skewing the frequencies of other regions in the CFG.
At the end of propagation, frequencies are scaled to values that take no
more than 64 bits to represent. When the range of frequencies to be
represented fits within 61 bits, it pushes up the scaling factor to a
minimum of 8 to better distinguish small frequency values. Otherwise,
small frequency values are all saturated down at 1.
Tested on x86_64.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8718
llvm-svn: 233826
Summary:
This change teaches ScalarEvolution::isLoopBackedgeGuardedByCond to look
at edges within the loop body that dominate the latch. We don't do an
exhaustive search for all possible edges, but only a quick walk up the
dom tree.
Reviewers: atrick, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8627
llvm-svn: 233447
This was discussed a while back and I left it optional for migration. Since it's been far more than the 'week or two' that was discussed, time to actually make this manditory.
llvm-svn: 233357
Summary:
With the introduction of MarkPendingLoopPredicates in r157092, I don't
think the bailout is needed anymore.
Reviewers: atrick, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8624
llvm-svn: 233296
Summary:
`ComputeNumSignBits` returns incorrect results for `srem` instructions.
This change fixes the issue and adds a test case.
Reviewers: nadav, nicholas, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8600
llvm-svn: 233225
Summary:
This change teaches isImpliedCond to infer things like "X sgt 0" => "X -
1 sgt -1". The `ConstantRange` class has the logic to do the heavy
lifting, this change simply gets ScalarEvolution to exploit that when
reasonable.
Depends on D8345
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8346
llvm-svn: 232576
Summary:
ScalarEvolutionExpander assumes that the header block of a loop is a
legal place to have a use for a phi node. This is true only for phis
that are either in the header or dominate the header block, but it is
not true for phi nodes that are strictly internal to the loop body.
This change teaches ScalarEvolutionExpander to place uses of PHI nodes
in the basic block the PHI nodes belong to. This is always legal, and
`hoistIVInc` ensures that the said position dominates `IsomorphicInc`.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8311
llvm-svn: 232189
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
There's a missed optimization opportunity where we could look at the full chain of computation and take the intersection of the flags instead of only looking one instruction deep.
llvm-svn: 232134
The dependences are now expose through the new getInterestingDependences
API so we can use that with -analyze too and fix the FIXME.
This lets us remove the test that relied on -debug to check the
dependences.
llvm-svn: 231807
This crash occurs due to memory corruption when trying to update dependency
direction based on Constraints.
This crash was observed during lnt regression of Polybench benchmark test case dynprog.
Review: http://reviews.llvm.org/D8059
llvm-svn: 231788
This crash in Dependency analysis is because we assume here that in case of UsefulGEP
both source and destination have the same number of operands which may not be true.
This incorrect assumption results in crash while populating Pairs. Fix the same.
This crash was observed during lnt regression for code such as-
struct s{
int A[10][10];
int C[10][10][10];
} S;
void dep_constraint_crash_test(int k,int N) {
for( int i=0;i<N;i++)
for( int j=0;j<N;j++)
S.A[0][0] = S.C[0][0][k];
}
Review: http://reviews.llvm.org/D8162
llvm-svn: 231784
CFLAA didn't know how to properly handle ConstantExprs; it would silently
ignore them. This was a problem if the ConstantExpr is, say, a GEP of a global,
because CFLAA wouldn't realize that there's a global there. :)
llvm-svn: 231743
We now treat pointers given to ptrtoint and pointers retrieved from
inttoptr as similar to arguments or globals (can alias anything, etc.)
This solves some of the problems we were having with giving incorrect
results.
llvm-svn: 231741
Summary:
This removes some duplicated code, and also helps optimization: e.g. in
the test case added, `%idx ULT 128` in `@x` is not currently optimized
to `true` by `-indvars` but will be, after this change.
The only functional change in ths commit is that for add recurrences,
ScalarEvolution::getRange will be more aggressive -- computing the
unsigned (resp. signed) range for a SCEVAddRecExpr will now look at the
NSW (resp. NUW) bits and check for signed (resp. unsigned) overflow.
This can be a strict improvement in some cases (such as the attached
test case), and should be no worse in other cases.
Reviewers: atrick, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8142
llvm-svn: 231709